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This paper investigates a deep learning-based wind-forecasting model to establish an accurate forecasting model which can
support the increasing growth of wind power generation. The wind forecasting means wind speed and direction forecasting at
the same time. Proposed forecasting model consists of three-dimensional convolutional neural network and deep convolutional
long short-term memory (3DCNN-DConvLSTM), and forecasts the wind vector which expressed as time-sequential images.
DConvLSTM model learns spatiotemporal features from time-series image data that represent a spatial and temporal change of
wind speed and direction. The forecasting model combined of 3DCNN and DConvLSTM is effective to decrease training time,
and forecasting error in comparison to the DConvLSTM model. Input of the forecasting model is wind speed and direction
that is expressed as an image on 2D coordinate and uses the measured data by the Automated Meteorological Data Acquisition
System (AMeDAS), Japan. Forecasting accuracy with one-hour ahead and its usefulness of the proposed forecasting model is
evaluated with simulation results for four seasons that is typical of Japan climate, and demonstrated by comparison with fully
connected-LSTM (FC-LSTM), encoder-decoder based 3DCNN (ED-3DCNN), DConvLSTM, and persistent models. © 2022
Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
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1. Introduction

All countries in the world have a common problem with stable
and sustainable supply energy due to the consumption of energy
increasing rapidly in accordance increasing population. One of
the solutions to that problem is usage of renewable energy as
alternative source energy. Renewable energy can also reduce
greenhouse gas effects such as methane and carbon dioxide. The
target of 2050 is to be able to supply 66% or two-third of the
demand for energy on the world by usage of renewable energy [1].

Wind energy as friendly, green, and clean renewable energy
has rapidly grown as an alternative resource and an important
resource for electricity generation. Increased growth of the wind
power generation is a potential and good impact for supply energy
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but has challenges about output power depends on wind speed
and direction that cannot control, it is difficult to control stable
the production of amount energy. To overcome it so necessary
makes an accurate wind speed and direction forecasting to decrease
unpredictability produced amount of energy later [1–3].

The wind forecasting method has three types: physical, statisti-
cal, and machine learning or artificial intelligence (AI) methods.
Physical methods like the meso-scale model (MSM) and numer-
ical weather prediction (NWP) is a good theory to get accurate
forecasting but need accurate and full information about weather
and atmospheric data and also need many computational costs
[4,5]. Statistical methods such as Markov chain models, autore-
gressive (AR), AR moving average (ARMA), and AR integral
MA (ARIMA) discovers a mathematical pattern to expressed wind
time-series and good performance to learn linear features but poor
to learn nonlinear features [3,6,7]. AI methods based on deep
neural networks (DNN) such as multi-layer perceptron (MLP)
and recurrent neural network (RNN) are great to learn nonlin-
ear features, forecast the future of wind time-series, and locate the
relationship between output data and input data without statistical
method [4,6,7].

Much previous research uses neural network (NN), and forecast
only wind speed by stacked denoising autoencoder (SDAE) [6],

© 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
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convolutional neural network (CNN) [4], long short-term memory-
recurrent neural network (LSTM-RNN) [3], and so on. This paper
proposes a novel forecasting model of both wind speed and direc-
tion (wind information) at the same time by the AI method using
three-dimensional CNN-deep convolutional long short-term mem-
ory (3DCNN-DConvLSTM) which combining encoder-decoder
based 3DCNN (ED-3DCNN) and deep ConvLSTM (DConvL-
STM). DConvLSTM analyzes time-series image data including
wind information and extracts spatiotemporal features of wind
information. On the other hand, ED-3DCNN uses encoder and
decoder networks to extract spatial and temporal features. DCon-
vLSTM between encoder and decoder networks is used to improve
forecasting accuracy, be easy for training, and decrease training
time [8,9].

Wind information is acquired from Automated Meteorological
Data Acquisition System (AMeDAS) at 1 h interval in Tokushima
city, Japan. Effectiveness of the proposed forecasting model for
a short-term forecasting that is 1 h ahead demonstrate by several
simulation results for each season in 1 year which is conducted for
the purpose of comparing with fully connected - long short-term
memory (FC-LSTM), ED-3DCNN, DConvLSTM, and persistent
models. Performances of all forecasting models are summarized
and evaluated using mean absolute error (MAE), root mean square
error (RMSE), and mean bias error (MBE).

2. Proposed Models

2.1. Data set Wind information from AMeDAS is
expressed by wind speed v (m/s) and 16 directions as shown in
Fig. 1(a). In our proposed forecasting model, wind information is
provided as images. The wind speed and direction are resolved
into east (E )-west (W) and north (N)-south (S) components. vx (t)
and vy (t) [m/s] as shown in Fig. 1(b). These components are
calculated by

vx (t) = v(t) cos γ (t) (1)

vy (t) = v(t) sin γ (t) (2)

where γ (t) is wind direction [◦] calculated from 16 directions.
In order for effective use of the image processing capability

of deep learning algorithm, wind information is plotted to image
and used for input and output data of the model. Size of input
and output images are 128 × 128 pixel. The wind information is

(a)
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(b)

Fig. 1. Wind speed and direction on coordinate system (a) vector
diagram (b) definition of component v(t)

plotted to a point (px (t), py (t)) in the image by python imaging
library (PIL) by using following conversion formula,

px (t) = 64

20
vx (t) + 64 (3)

py (t) = 64 − 64

20
vy (t) (4)

where 64 is half of image size and 20 means estimated maximum
wind speed 20 (m/s). The reason the maximum scale is 20 m/s
that is the maximum wind speed of Tokushima city by AMeDAS
from December 2014 to November 2018 is approaching 20 m/s
that is 19.8 m/s as shown in Table I. The wind speed is 10 min
averaged data. In addition, it is easy to predict that the wind speed
will be high when a typhoon approaches. In addition, the wind
power generator will be stopped for safety, so the demand for
wind speed forecast at typhoon is not high. In this paper, we set
the value that wind speed does not exceed the estimated maximum
wind speed which depends on the historical wind information in
the city. In order to express information of wind speed change, the
input image contains six plotted points at p(t−5) to p(t) which
represent 6 h data. The six points are connected by line and the
latest point is larger than the others. Figure 2 shows procedure
of the input image generation. Moreover, the input data are time
sequenced nine images from m(t−8) to m(t) as shown in Fig. 2.
Table II shows a period of data set for test, validation, and training.
The time sequence of the output image is the same as the input
image is shown in Fig. 3. From Fig. 3, the target image of 1 h
ahead is the last image (ninth image) of the output and the other
eight images are past time data. The effect of the eight images in
the output images is to improve forecast error by taking the most
recent wind speed change into account.

Table I. Maximum wind speed every month

Month
December 2014–
November 2015

December 2015–
November 2016

December 2016–
November 2017

December 2017–
November 2018

December 8.5 9.7 9.5 8.3
January 9.8 9.6 9.5 8.2
February 9.9 10.3 9.9 12.8
March 9.4 8.6 9.2 9.4
April 9.5 10.9 10.2 9.4
May 11.7 13.2 8.3 9.2
June 9.5 8.9 10.4 8.4
July 17.8 7.7 6.7 12.7
August 15.9 8 12.4 12.6
September 7.4 12 19.8 16
October 9.6 8.1 9.7 12.4
November 8.3 9.2 8.5 7.8

1621 IEEJ Trans 17: 1620–1628 (2022)
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Fig. 2. Procedure of input image generation

Table II. Period of data set

Data set Period

Training December 2014–November 2016
Validation December 2016–November 2017
Test December 2017–November 2018

2.2. FC-LSTM LSTM is an advanced kind of RNN and
a very famous model for analyzing time-series data. Furthermore,
LSTM is powerful and stable to learn long-term dependency which
is realized by three gates: input, forget, and output gates. This paper
uses FC-LSTM that is strong for learning temporal relationship
and it affects the loss of spatial information. All states and gates
of FC-LSTM are 1D vectors [10–12]. The network of FC-LSTM
consists of four LSTM layers and one fully connected (FC) layer.
Each LSTM layer uses 32 units which are the same number of

channel size in the ConvLSTM layer. The last FC layer is used
to get forecasted result. The important equation of LSTM unit are
follows [10,11,13],

it = σ (Wxi · xt +WHi ·Ht−1 +WCi
◦Ct−1 + bi ) (5)

Ct = f
t

◦ Ct−1 + it ◦ tanh(WxC · xt +WHC ·Ht−1 + bC ) (6)

f
t
= σ

(
Wxf · xt +WHf ·Ht−1 +WCf

◦Ct−1 + bf

)
(7)

ot = σ (Wxo · xt +WHo ·Ht−1 +WCo
◦ Ct + bo) (8)

Ht = ot
◦ tanh(Ct ) (9)

Fig. 3. Input and output image components of forecasting model

1622 IEEJ Trans 17: 1620–1628 (2022)
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Fig. 4. Configuration of ED-3DCNN model

where W is weight, b is bias, H is hidden state, x is input data, σ

is activation function, ◦ is Hadamard product, i, C, f, o mean input
gate, cell state, forget gate, and output gate, respectively.

2.3. ED-3DCNN CNN is a suitable and efficient method
to process the images (2DCNN), video (3DCNN), and sounds
(1DCNN) [9,14]. This paper uses ED-3DCNN which consists
of encoder and decoder networks as shown in Fig. 4. Encoder-
decoder based 3DCNN has five-dimensional feature maps: number
of sample data (N ), depth (d ), height (h), width (w ), and channel
(c) [15]. The encoder network consists of two Conv layers
and two max-pooling layers that convolute spatial and temporal
dimensions, and also output narrowed feature maps. The decoder
network consists of two Deconv layers and two up-sampling layers
that reconstitute image from feature maps enlarged h and w . The
kernel size is five. The channel sizes of Conv are 8 and 16. The
channel sizes of Deconv are 16 and 1. The reason for the end
process of Deconv utilizes one channel to get the forecasted result.

2.4. DConvLSTM ConvLSTM model for improvement
of LSTM model which is used convolutional structure for both
transitions; state-to-state and input-to-state so that can receive five
dimensions [N , time sequence (ts), h , w , and c] as shown in Fig. 5
can accomplish sequence to sequence process [10,11].

Moreover, equation of ConvLSTM uses a convolution operation
‘�’ by replaced product operation ‘·’ in equations of LSTM
((5)–(9)) as shown in (10)–(14) [8,10,11,13],

it = σ (Wxi � xt +WHi �Ht−1 +WCi
◦Ct−1 + bi ) (10)

f
t
= σ

(
Wxf � xt +WHf �Ht−1 +WCf

◦Ct−1 + bf

)
(11)

Fig. 5. Internal structure of ConvLSTM
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Fig. 6. Configuration of DConvLSTM model

Ct = f
t

◦ Ct−1 + it ◦ tanh(WxC � xt +WHC � ht−1 + bC ) (12)

ot = σ (Wxo � xt +WHo �Ht−1 +WCo
◦Ct + bo) (13)

Ht = ot
◦ tanh (Ct ) (14)

Similarly that LSTM, ConvLSTM has cell state, forget gate, input
gate, and output gate.

This paper proposes the multilayer ConvLSTM that uses four
ConvLSTM layers in both networks: encoder network and fore-
caster network that is called the DConvLSTM (Deep ConvLSTM)
model for spatiotemporal sequence forecasting as shown in Fig. 6.
Encoder network consists of ConvLSTM layer, and forecaster net-
work consists of ConvLSTM layer and a Conv layer. Fore inputs
to the forecaster network are set to zero arrays.

Channel size of ConvLSTM layers are 32. The kernel size is
five. In the forecaster network, state of the ConvLSTM layer
are copied out of the last state of the ConvLSTM layer in the
encoder network. The end process of the DConvLSTM model
executes sequence to sequence use the Conv layer for capturing
spatiotemporal features from the ConvLSTM layer in the forecaster
network. The input and output of the DConvLSTM model are
the same sizes. The all-states of DConvLSTM concatenate in the
forecaster network to input of Conv layer that it uses channel size
one for getting forecasting results.

1623 IEEJ Trans 17: 1620–1628 (2022)
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Fig. 7. Configuration of 3DCNN-DConvLSTM model

2.5. 3DCNN-DConvLSTM 3DCNN-DConvLSTM
is combines ED-3DCNN and DConvLSTM models. 3DCNN-
DConvLSTM is the forecasting model improved DConvLSTM
model which combines the merit of CNN and ConvLSTM: can
improve forecasting accuracy, reduce training time, and more
easily to training. The reason 3DCNN-DConvLSTM can easy to
training: the feature maps narrowed use max-pooling layer so can
easy to train in ConvLSTM layer and output can get same size
using up-sampling layer. Configuration of 3DCNN-DConvLSTM
model is shown in Fig. 7.

3DCNN-DConvLSTM model consists of encoder and forecaster
networks. Encoder network composes of two Conv layers, two
max-pooling layers, and four ConvLSTM layers. In encoder
network, max-pooling used to narrowed h and w of feature maps.
Forecaster network composes of two Deconv layers, two up-
sampling layers, and four ConvLSTM layers that is feature maps
are enlarged h and w by up-sampling. Fore input uses zero arrays.
Fore input required as input in the forecaster network and it to
copy the last state from ConvLSTM layer in the encoder network
to ConvLSTM layer in the forecaster network for getting output
image. Channel size of two Conv and two Deconv layers are 8, 16,
16, and 1, respectively. The end Deconv is one layer and outputs
the forecasting result. The channel size of ConvLSTM is 32. The
kernel size of Conv., Deconv. and ConvLSTM layers use five.
The procedure of the 3DCNN-DConvLSTM model is similar to
the DConvLSTM model but the difference the DConvLSTM is
located between 3DCNNs.

2.6. Learning procedures Table III shows the learning
conditions of the proposed forecasting models. Leaky ReLU
(Leaky rectified linear unit) is employed as an activation function
for resolving dying ReLU that has a non-zero slope part and can
speed up training time. The training process is iterated for 20
epochs with batch size four. The network is trained using RMSProp
(root mean square propagation) optimizer.

Table III. Learning condition of proposed models

Description Data

Activation function Leaky ReLU
Epoch 20
Batch size 4
Optimizer RMSProp lr 0.001

ρ 0.9

Performances of the proposed forecasting models are evaluated
by MAE, RMSE, and MBE these evaluation indexes are defined as,

MAE = 1

N

N∑

r=1

| yr − ŷr | (15)

RMSE =
√√
√
√ 1

N

N∑

r=1

(yr − ŷr )
2 (16)

MBE = 1

N

N∑

r=1

(̂yr − yr ) (17)

where N means the number of learning data, yr means actual
measurement data, and ŷr means forecasted data. RMSE is
suitable for evaluating the overall accuracy of the forecasts while
penalizing large forecast errors in a square order. RMSE is obtained
for minimizing squared errors so that lead to forecasting of the
mean. MAE is suitable for evaluating uniform forecast errors. MAE
is obtained for minimizing absolute average error that measure the
closeness of the forecasting to actual measurement data so that
lead to forecasting of the median. MBE is suitable for assessing
forecast bias [16,17].

3. Forecasted Results

Forecasted results (wind speed and direction) are extracted from
the forecasting of image as a center of gravity position of the
largest pixel cluster with value zero. The forecasted position is
converted to v̂x (t) and v̂y (t) with substracted the center position
of the image (64, 64) that are calculated p̂x (t) and p̂y (t) as follows,

v̂x (t) = 20

64
(̂px (t) − 64) (18)

v̂y (t) = 20

64

(
64 − p̂y (t)

)
(19)

Forecasted wind speed and direction are calculated by

γ̂ (t) = tan−1
(
v̂y (t)

v̂x (t)

)
(20)

v̂(t) =
√
v̂

2
x
(t) + v̂

2
y
(t) (21)

where γ̂ (t) is forecasted wind direction [◦], and v̂(t) is forecasted
wind speed (m/s).

Figures 8 and 9 show forecasted results of wind speed and
direction for 1-day in November 25, 2018, respectively. The reason
for choosing November because the RMSE is lower than other
months and for choosing date 25 due to the rapid influence change
of wind speed and direction to all forecasting models.
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Fig. 8. Forecasted results of wind speed on November 25, 2018
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Fig. 9. Forecasted results of wind direction on November 25, 2018

For confirming the effectiveness of 3DCNN-ConvLSTM model,
we compare with FC-LSTM, ED-3DCNN, DConvLSTM, and
Persistent models. From Fig. 8 (yellow oval mark), in cases of
DConvLSTM and 3DCNN-DConvLSTM, the forecasting delay
caused rapidly change of wind speed was reduced than FC-
LSTM. That is, it was confirmed that DConvLSTM and 3DCNN-
DConvLSTM models can effectively extract temporal features
of wind vector change due to the expression of wind vector
transition on 2D image. From Figs 8 and 9, forecasted wind
speed and direction by the proposed 3DCNN-DConvLSTM model
is approached measured data compared with other forecasting
models.

Tables IV–VI show values of RMSE, MAE, MBE used for
evaluation of each forecasting models. For calculating MAE uses
the absolute value for evaluation, in that case, forecasting errors
have a small variance that caused MAE is slightly lower than
RMSE. In Tables IV and V, the FC-LSTM model has the lowest
forecasting accuracy for wind speed and forecasting accuracy
for the wind speed of the ED-3DCNN model better than the
FC-LSTM model. From Table IV, the FC-LSTM model has the
lowest forecasting accuracy for a total wind direction, and the

ED-3DCNN model slightly better than the FC-LSTM model.
From Table V, the ED-3DCNN model has the lowest forecasting
accuracy for a total wind direction, and the FC-LSTM model
slightly better than the ED-3DCNN model. DConvLSTM and
3DCNN-DConvLSTM models can be improving accuracy than
FC-LSTM and ED-3DCNN which the highest forecasting accuracy
is 3DCNN-DConvLSTM in RMSE and MAE so the 3DCNN-
DConvLSTM model is the best forecasting model than other
models. Positive value of MBE representing error of forecasting
model to overestimation and negative value of MBE representing
error of forecasting model to underestimated while positive value
of MBE to wind direction representing clockwise deviation and
conversely. From Table VI of wind speed, the total MBE value
of 3DCNN-DConvLSTM, DCLSTM, persistent model, and FC
LSTM are negative values and MBE of ED-3DCNN is positive
value. From Table VI of wind direction, the total MBE value of
all models are positive values.

Table VII shows the improvement rate of DConvLSTM
and 3DCNN-DConvLSTM models over FC-LSTM model from
December 2017 to November 2018. From RMSE column of
Table VI, DConvLSTM can improve the accuracy of wind speed
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Table IV. RMSE of wind speed and direction

RMSE

Description

FC-

LSTM

ED-

3DCNN DConvLSTM

Persistent

model

3DCNN-

DConvLSTM

December v (m/s) 1.37 1.23 1.08 1.28 1.04

γ (◦) 37.6 40.8 36.0 37.6 33.0

January v (m/s) 1.43 1.27 1.07 1.28 1.02

γ (◦) 41.3 43.5 40.1 42.2 35.6

February v (m/s) 1.55 1.26 1.05 1.25 1.03

γ (◦) 45.0 44.7 44.1 48.6 40.9

March v (m/s) 1.59 1.26 1.10 1.33 1.07

γ (◦) 56.1 56.7 49.6 57.2 47.4

April v (m/s) 1.72 1.29 1.20 1.43 1.15

γ (◦) 58.9 57.1 51.3 60.2 49.0

May v (m/s) 1.56 1.21 1.15 1.42 1.10

γ (◦) 61.9 61.7 54.6 64.6 52.5

June v (m/s) 1.46 1.18 1.05 1.25 0.99

γ (◦) 55.8 52.2 52.0 57.7 47.1

July v (m/s) 1.88 1.32 1.12 1.31 1.08

γ (◦) 52.1 50.1 47.2 56.4 46.7

August v (m/s) 1.71 1.23 1.11 1.22 1.04

γ (◦) 53.5 48.4 48.2 56.6 44.1

September v (m/s) 2.06 1.30 1.15 1.44 1.12

γ (◦) 56.4 58.7 54.9 56.6 48.2

October v (m/s) 1.49 1.20 1.07 1.24 1.02

γ (◦) 45.6 48.9 43.5 46.3 40.2

November v (m/s) 1.15 1.08 0.89 0.95 0.85

γ (◦) 38.9 41.7 35.7 39.6 32.8

Total v (m/s) 1.60 1.24 1.09 1.29 1.05

γ (◦) 50.9 50.9 46.9 52.7 43.6

Note: Bold values are the best forecasting result of 3DCNN-ConvLSTM than
other models.

Table V. MAE of wind speed and direction

MAE

Description

FC-

LSTM

ED-

3DCNN DConvLSTM

Persistent

model

3DCNN-

DConvLSTM

December v (m/s) 1.06 0.98 0.83 0.99 0.81

γ (◦) 23.1 25.6 22.2 23.6 20.1

January v (m/s) 1.10 0.99 0.82 0.95 0.77

γ (◦) 26.0 26.4 24.2 25.4 21.5

February v (m/s) 1.13 0.99 0.79 0.94 0.78

γ (◦) 29.1 29.9 27.9 31.5 25.7

March v (m/s) 1.16 0.95 0.79 0.95 0.78

γ (◦) 37.4 37.9 32.5 38.2 30.6

April v (m/s) 1.29 0.97 0.89 1.07 0.87

γ (◦) 40.0 37.5 33.5 40.3 31.9

May v (m/s) 1.17 0.91 0.84 1.03 0.79

γ (◦) 42.5 41.7 36.5 44.3 34.7

June v (m/s) 1.12 0.89 0.79 0.95 0.74

γ (◦) 37.1 35.1 33.9 38.3 30.2

July v (m/s) 1.38 1.03 0.85 1.01 0.83

γ (◦) 33.4 32.2 29.2 35.7 28.6

August v (m/s) 1.26 0.90 0.80 0.91 0.75

γ (◦) 34.8 31.5 30.6 36.3 27.5

September v (m/s) 1.29 0.95 0.84 0.98 0.79

γ (◦) 38.2 39.9 35.8 38.2 31.5

October v (m/s) 1.05 0.93 0.81 0.91 0.76

γ (◦) 30.0 32.9 28.4 30.8 26.3

November v (m/s) 0.87 0.84 0.68 0.74 0.65

γ (◦) 24.9 27.1 22.5 25.4 21.1

Total v (m/s) 1.16 0.95 0.81 0.95 0.78

γ (◦) 33.1 33.2 29.8 34.0 27.5

Note: Bold values are the best forecasting result of 3DCNN-ConvLSTM than
other models.

Table VI. MBE of wind speed and direction

MBE

Description FC-LSTM

ED-

3DCNN DConvLSTM

Persistent

model

3DCNN-

DConvLSTM

December v (m/s) −0.53 0.09 −0.21 −0.03 −0.02

γ (◦) 14.1 8.11 10.1 11.4 6.18

January v (m/s) −0.39 0.18 −0.17 −0.05 −0.05

γ (◦) 13.7 8.45 9.11 10.4 6.68

February v (m/s) −0.56 0.10 −0.21 −0.10 −0.08

γ (◦) 17.5 9.92 9.96 11.6 8.64

March v (m/s) −0.70 0.08 −0.15 −0.14 −0.15

γ (◦) 18.7 14.2 8.39 10.7 6.17

April v (m/s) −0.79 −0.07 −0.19 −0.19 −0.19

γ (◦) 18.6 13.6 11.0 8.41 5.74

May v (m/s) −0.61 0.01 −0.16 −0.19 −0.19

γ (◦) 17.1 13.9 10.1 8.08 3.24

June v (m/s) −0.51 −0.01 −0.19 −0.16 −0.17

γ (◦) 15.8 12.4 10.1 9.84 4.46

July v (m/s) −0.74 −0.06 −0.08 −0.22 −0.22

γ (◦) 6.20 10.0 7.06 8.49 5.06

August v (m/s) −0.74 −0.01 −0.08 −0.19 −0.19

γ (◦) 11.6 5.72 5.98 9.34 6.24

September v (m/s) −0.71 0.04 −0.21 −0.11 −0.10

γ (◦) 17.5 11.7 9.77 10.9 7.54

October v (m/s) −0.54 0.14 −0.17 −0.03 −0.04

γ (◦) 18.9 11.2 11.1 14.6 10.3

November v (m/s) −0.36 0.12 −0.20 0.02 0.01

γ (◦) 11.7 3.91 5.26 9.27 4.61

Total v (m/s) −0.60 0.05 −0.17 −0.12 −0.12

γ (◦) 15.1 10.3 8.98 10.2 6.23

is 21.46%–44.02% and wind direction is 2.02%–13.06% and also
3DCNN-DConvLSTM can improve accuracy of wind speed is
23.90%–45.70% and wind direction is 9.20%–17.70%. Similarly,
from MAE column of Table VII, DConvLSTM can improve the
accuracy of wind speed is 21.01%–38.35% and wind direction
is 3.59%–16.24% and also 3DCNN-DConvLSTM can improve
accuracy of wind speed is 23.52%–40.52% and wind direction is
11.67%–21.09%. From Table VII, the 3DCNN-ConvLSTM model
can improve accuracy than DConvLSTM, significantly both in
wind speed and direction that it indicates 3DCNN-ConvLSTM is
the benchmark model.

Training time of all forecasting models are shown in Fig. 10.
The training time shown in Fig. 10 is the time required to train
2 years of data. DConvLSTM model is the longest training time
and ED-3DCNN model is the shortest training time. From these
result, we can confirm that 3DCNN-DConvLSTM model can
effectively reduce training time of DConvLSTM model. This is
due to have process max-pooling to narrow feature maps before
ConvLSTM process that can be easy to training, after ConvLSTM
process, we use up-sampling to enlarge feature maps so get same
size of input and output image. Overall, 3DCNN-DConvLSTM
model can achieve the best forecasting accuracy, and effectively
decrease training time than DConvLSTM, and it indicates the
best forecasting model. The forecasting data uses 1 year and the
forecasting time is a quarter of training time due to the forecasting
process not needing backpropagation calculation. So that, the
forecasting time to each model forecast 1 h ahead get from quotient
between forecasting time for 1 year and amount of data 1 year and
it as shown in Table VIII.
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Table VII. Improvement rate of wind speed and direction

Improvement rate (%)

RMSE MAE

Description DConvLSTM

3DCNN-

DConvLSTM DConvLSTM

3DCNN-

DConvLSTM

December v (m/s) 21.5 23.9 21.0 23.5

γ (◦) 4.05 12.1 3.59 12.7

January v(t) (m/s) 25.2 28.2 25.5 30.3

γ (◦) 2.72 13.8 6.85 17.4

February v (m/s) 32.3 33.5 29.5 31.2

γ (◦) 2.02 9.20 3.98 11.7

March v (m/s) 30.9 32.5 31.5 32.5

γ (◦) 11.6 15.4 13.1 18.3

April v (m/s) 29.8 33.0 30.7 32.8

γ (◦) 13.1 16.9 16.2 20.1

May v (m/s) 26.3 29.4 28.5 32.1

γ (◦) 11.9 15.1 14.1 18.3

June v (m/s) 28.1 31.6 29.5 34.2

γ (◦) 6.77 15.5 8.33 18.3

July v (m/s) 40.5 42.4 38.4 40.1

γ (◦) 9.33 10.3 12.3 14.3

August v (m/s) 34.7 38.9 36.4 40.5

γ (◦) 10.0 17.7 12.3 21.1

September v (m/s) 44.0 45.7 35.3 38.8

γ (◦) 2.64 14.5 6.3 17.5

October v (m/s) 28.5 32.0 23.0 27.4

γ (◦) 4.59 11.8 5.32 12.4

November v (m/s) 22.7 26.2 22.3 25.4

γ (◦) 8.46 15.8 9.55 15.1

Total v (m/s) 31.8 34.5 29.9 32.9

γ (◦) 7.93 14.3 9.90 16.8

Fig. 10. Training time for all proposed forecasting models

4. Conclusion

This paper applied deep learning-based 3DCNN-DConvLSTM
to wind speed and direction forecasting. For verifying effective-
ness of the proposed 3DCNN-DConvLSTM model, RMSE, MAE,
and MBE were used as evaluation indexes, and compared with FC-
LSTM, ED-3DCNN, DConvLSTM, and persistent models. From

Table VIII. Forecasting time to forecast 1 h ahead

Proposed forecasting model Forecasting time (min)

FC-LSTM 0.004
ED-3DCNN 0.001
DConvLSTM 0.072
DCNN-DConvLSTM 0.011

simulation results, 3DCNN-DConvLSTM model had the high-
est forecasting accuracy. DConvLSTM and 3DCNN-DConvLSTM
models could solve temporal sequence-caused convolutional struc-
ture and improve forecasting accuracy more than FC-LSTM and
ED-3DCNN models. 3DCNN-DConvLSTM model which combine
ED-3DCNN and DConvLSTM improved forecasting accuracy,
more easy to training, and significantly reduced training time than
DConvLSTM.

The future work is to improve forecasting accuracy of wind
speed and direction uses more complex convolutional and increase
data set that training, validation, and forecasting data set.
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