Implementation of Blackbox Testing in Real-Time

by Kukuh Yudistiro

Submission date: 26-May-2023 01:43PM (UTC+0700)

Submission ID: 2102258029

File name: 0210621_-_Implementation_of_Blackbox_Testing_in_Real-Time_1.pdf (1.01M)

Word count: 2970

Character count: 17905

Implementasi Blackbox Testing Pada Aplikasi Real-Time Thermal Video Detection (Studi Kasus Deteksi Demam/Covid-19)

Kukuh Yudhistiro¹, Aditya Galih Sulaksono², Aditya Hidayat Pratama³

1, 2, 3 University of Merdeka Malang

1k2y0f2t1i@unmer.ac.id, 2adit@unmer.ac.id, 3aditya.hidayat@unmer.ac.id

ABSTRAK

Seiring munculnya pandemi Covid-19 yang vaksinnya belum tersebar secara merata, seluruh negara di dunia khususnya Indonesia telah melakukan beberapa langkah preventif guna menghambat penyebaran virus tersebut. Salah satu tindakan awal adalah melakukan deteksi setiap orang yang keluar masuk ke dalam negeri melalui bandara maupun transportasi darat. Tindakan dini tersebut dilakukan dengan mendeteksi suhu tubuh dari warga yang melalui lokasi-lokasi keluar masuk seperti bandara udara, dan stasiun kereta api. Deteksi pada umumnya dilakukan menggunakan thermal gun berbentuk alat tembak *infrared* yang diarahkan ke individu yang melewati pemeriksaan. Pada riset ini dibahas rangkaian alat yang terdiri dari kamera dengan sensor *thermal* dimana data hasil *capture* akan diolah melalui perangkat lunak yang menampilkan *histogram* suhu bagian dada hingga kepala seseorang secara *realtime*. Setiap hasil *capture* digunakan sebagai dataset yang dapat digunakan untuk kebutuhan *tracing* pengunjung tempat publik. Pada riset ini akan membahas pengujian fungsional (*blackbox*) dari aplikasi *thermal video detection* pada studi kasus deteksi demam.

Kata Kunci: thermal camera, covid-19, black-box testing, suhu badan, deteksi video

ABSTR CT

During the emergence of the Covid-19 pandemic whose vaccines have not been spread evenly, all countries in the world, especially Indonesia have taken several preventive steps to prevent the spread of the virus. One of the initial actions is to defect every person entering and leaving the country through it ports or land transportation. This early action was carried out by detecting the body temperature of residents passing in and out of locations such as airports and train stations. The fever detection is generally carried out using a thermal gun in the form of an infrared gun aimed at individuals who pass the inspection. This research discusses a series of tools consisting of a camera with a thermal sensor where the captured data will be processed through software that displays a histogram of the temperature from the chest to the person's head in real time. Each capture result is used as a dataset that can be used for tracing the needs of visitors to public places. In this research, we will discuss functional testing (blackbox) of the application of thermal video detection in case studies of fever detection

Keywords: thermal camera, covid-19, black-box testing, body temperature, video detection

1. PENDAHULUAN

Virus corona yang ditengarai berasal dari Wuhan, Tiongkok, telah merebak ke berbagai negara. Berbagai upaya ditempuh untuk mengantisipasi penularan virus ini, termasuk dengan memasang thermal scanner di pintu-pintu masuk negara. Sejumlah negara menggiatkan pemasangan thermal scanner di tempat-tempat umum menyusul wabah Covid-19 yang telah merebak. Pemeriksaan ini kini menjadi metode andalan untuk mendeteksi dan mencegah penularan virus corona tersebut. Thermal scanner bekerja dengan memindai suhu tubuh seseorang . Biasanya, alat ini diatur untuk mendeteksi suhu di atas 38 derajat celsius. Suhu tubuh yang tinggi adalah tanda bahwa tubuh sedang terinfeksi oleh patogen (bibit penyakit) tertentu. Meski efektif mendeteksi demam, thermal scanner pun memiliki keterbatasan. Alat ini hanya mendeteksi suhu tubuh yang tinggi, tapi tidak bisa menentukan penyebabnya [1].

Dengan cara tertentu, pasien terinfeksi virus corona bisa saja mengakali thermal scanner agar lolos dari pemeriksaan. Kendati efektif mendeteksi panas, namun penggunaan thermal gun sebenarnya memiliki kekhususan secara fungsionalistas terutama jenis laser infrared yang tertanam pada termometer infrared tersebut [2]. Untuk kebutuhan medis umumnya digunakan termometer infrared untuk dahi/kening yang diaplikasikan pada jarak 1,5" dari titik tengah dahi. Selain itu penggunaan termometer infra red ke perorangan, tidak cukup efektif hal ini disebabkan model tersebut secara teknis hanya mendeteksi bagian permukaan saja, berbeda dengan kamera thermal realtime dapat menangkap gambar realtime thermal tubuh[3][4]. Kamera yang dipergunakan adalah kamera pengukur suhu (thermal) [5] . Kamera tersebut merekam foto area kepala dan mendeteksi suhu badan mengunakan sensor panas [6] yang terpasang pada perangkat tersebut. Sarana untuk merekam data deteksi menggunakan perangkat lunak yang menampilkan video asli, video histogram suhu, angka derajat suhu, dokumentasi deteksi berupa snapshot masing-masing orang, dan rekap jumlah orang yang terdeteksi baik pada suhu normal maupun abnormal.

Paper ini membahas hasil uji fungsional (Black-box testing) dari aplikasi deteksi suhu tubuh menggunakan video thermal real-time. Sebelum tahap implementasi di tempat publik, aplikasi tersebut harus melalui tahap uji coba [7][8]. Uji coba tersebut akan memberikan nilai apakah perangkat lunak tersebut dapat berfungsi dengan baik [9] sesuai kebutuhan [10] dan akurasi atau tidak [11]. Pengujian perangkat lunak ditujukan agar dapat menemukan kekurangan atau kesalahan baik teknis [12] maupun operasional [13]. Pada beberapa referensi membahas beberapa karakter umum terkait pengujian perangkat lunak seperti berikut:

- Pengujian perangkat lunak dimulai pada level modul [7] dan mengarah pada integrasi [14] dengan sistem komputer
- Pengujian aplikasi pertama-tama dilakukan oleh pengembang aplikasi
- Pengujian aplikasi dalam bentuk proyek besar dilakukan dalam kelompok penguji yang independen.

Pada uji aplikasi ini difokuskan pada model Boundary Value Analysis [15] yang membahas kelengkapan menu. Modul dan proses pengoperasiannya. Pada prinsipnya pengujian metode Black-Box atau umumnya disebut pengujian fungsional adalah cara menguji piranti lunak tanpa mengetahui struktur atau isi kode pemrograman. Penguji menyadari apa yang harus dikerjakan oleh aplikasi [16][17] namun ia tidak memiliki pengetahuan tentang bagaimana pemrograman dalam aplikasi tersebut menjalankannya . Alasan penggunaan metode Black-Box adalah salah satunya terjadi pemisahan perspektif antara pengguna dan pembuat aplikasi. Selain itu akses ke kode pemrograman tidak diperlukan. Sehingga metode pengujian Black-Box ini sangat efisien untuk pengujian pada aplikasi dengan struktur pemrograman yang besar.

2. METODOLOGI PENELITIAN

Metode Uji Perangkat Lunak

Metodologi penelitian yang digunakan untuk uji aplikasi real-time thermal video detection dan analisa data suhu badan adalah black-box testing mode boundary value analysis.

Tempat Penelitian

Uji aplikasi perangkat lunak *real-time thermal* video detection ini dilakukan di fakultas Teknologi Informasi, Universitas Merdeka Malang.

Sampling data

Sumber data untuk *processing* adalah data *scanning* yang berasal dari mahasiswa, dosen maupun staf yang melewati proses *scanning* pada *thermal camera*, perangkat lunak dan protokol yang disediakan.

Instrument data

Data yang diharapkan dapat terkumpul untuk tujuan dokumentasi dan pelacakan riwayat scanning adalah:

- Jumlah total orang yang telah diuji melalui thermal camera sejak perangkat dipasang
- Jumlah total orang yang telah diuji melalui thermal camera pada hari tersebut
- Jumlah total orang yang telah diuji dan berstatus abnormal sejak perangkat terpasang
- Jumlah total orang yang telah diuji dan berstatus abnormal pada hari tersebut
- Jumlah total orang yang telah diuji dan berstatus normal sejak perangkat terpasang
- 6) Jumlah total orang yang telah diuji dan berstatus normal pada hari tersebut
- 7) Suhu hasil deteksi thermal camera setiap orang
- 8) Tanggal dan jam deteksi setiap orang
- 9) Citra snapshot video camera
- 10) Citra snapshot thermal camera
- 11) Status normal atau abnormal

Teknis uji

Berikut adalah modul yang diuji dengan metode *Black-Box:*

Modul uji	Komponen Uji
Adding Device	Koneksi via wireless
Thermal Camera	Verifikasi
Konfigurasi	Pengaturan suhu abnormal
perangkat	Alarm voice
	Alarm message
Layar tangkap video	Area face detection
face detection	
Layar tangkap video	Area histogram suhu
thermal	
Infografik	Grafik jumlah deteksi
Data statistik	Jumlah orang yang telah
	diuji
	Reset
Riwayat rekam	File hasil capture

3. HASIL DAN PEMBAHASAN

Tujuan dari pengujian perangkat lunak *real-time thermal video detection* dan analisa data suhu badan adalah untuk mengetahui tingkat efektivitas dan fungsionalitas dari aplikasi tersebut.

Spesifikasi sistem perangkat pendukung (perangkat keras)

Pada Tabel 2 berikut ini adalah spesifikasi perangkat pendukung yaitu perangkat keras berupa kamera *thermal* sebagai sumber input data *scanning*.

Tabel 2. Spesifikasi Perangkat Keras		
System	Embedded Linux system, ARM	
chip structure		
Thermal sensor	Hestia 32*32 90µm	
Accuracy	±0.3°C	
Temperature range	32-42	
Video compression	H.265/20FPS	
Video format	PAL	
Min illumination	0.01 lux	
Shutter	Auto	
Sensor resolution	1/2.9"COMS SC2232H/GC2063	
	1902*1080	
Port	Wifi transmision / RJ45 interface	
Alarm	 Face detection alarm 	
	High and low temperature	
	abnormal alarm	
Jarak perangkat ke	0.75-1 m	
orang		

Implementasi Kepada User

Yang disebut *user* adalah orang yang melakukan aktivitas keluar masuk area gedung fakultas Teknologi Informasi Universitas Merdeka Malang.

Gambar 1. Implementasi deteksi suhu badan dengan *thermal camera*

Kamera thermal yang dipasang di tempat strategis dimana orang keluar masuk, kamera tersebut menangkap gambar video dari orang yang melakukan prosedur cek poin, diproses melalui perangkat lunak pada komputer dan ditampilkan dalam bentuk realtime video dalam bentuk thermal seperti yang terlihat pada Gambar 1. Informasi yang ditampilkan selain thermal graph, yaitu suhu dari setiap personal pengunjung. User dapat melihat hasil deteksi suhu badannya secara spesifik bagian kepala.

Gambar 2. Real-time video dari thermal camera

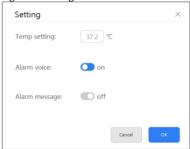
Koneksi ke perangkat Thermal Camera

User dapat menghubungkan perangkat lunak ke perangkat keras thermal camera melalui fitur wi-fi dari camera seperti yang terlihat pada Gambar 3.

Hasil uji coba:

- 1. *User* harus menyalakan *thermal camera* terlebih dahulu
- Fitur sebagai wi-fi source pada camera secara otomatis aktif
- Pada aplikasi, user disediakan sebuah button Add Device sehingga muncul tampilan animasi radar tambahan dan bila ada device yang terdeteksi, maka akan ditampilkan pada list.

Gambar 3. Tampilan proses deteksi kamera melalui Wi-Fi


 Hasil deteksi perangkat, ditampilkan pada list pada Gambar 4. User dapat secara langsung memilih nama dari device tersebut dan sudah terkoneksi secara otomatis.

Gambar 4. List device camera yang terdeteksi

- Untuk kebutuhan keamanan, bila perangkat kamera terhubung ke perangkat komputer yang baru, maka diharuskan memasukkan username dan password.
- Tidak terdapat fitur mengubah password untuk koneksi ke perangkat camera secara langsung pada aplikasi.
- 7. Tidak terdapat fitur lupa *password* secara langsung pada aplikasi.

Konfigurasi Perangkat

Gambar 5. Pengaturan suhu dan alarm

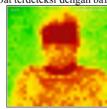
Hasil uji:

- Sudah terdapat pengaturan yang memungkinkan untuk mengubah suhu abnormal seperti terlihat pada Gambar 5 di atas.
- Sudah terdapat pengaturan mengaktifkan dan menonaktifkan bunyi alarm dan suara informasi deteksi yang berbunyi "Normal Temperature" bila suhu masuk kriteria normal dan "Abnormal temperature" bila suhu masuk kriteria abnormal.
- 3. Suara pesan deteksi tidak terlalu jelas.

Area face detection

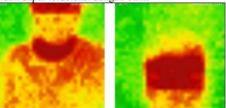
Gambar 6. Area video capture dengan *face* recognition

Hasil uji:


- Perangkat lunak menghasilkan recognition yang baik jika wajah user minimal masuk ke area yang telah disediakan seperti terlihat pada Gambar 6. Selain itu hasil tidak akurat atau tidak ada hasil scanning
- Resolusi video camera cukup besar yaitu 1920x1080 sehingga membutuhkan perangkat komputer yang memenuhi minimum requierement agar aplikasi dapat berjalan stabil
- Area face detection hanya dapat menangkap obyek wajah. Selain itu tidak terdeteksi dengan baik misal obyek tangan atau bagian belakang kepala

- Pemberian garis area deteksi diharapkan membantu meningkatkan akurasi deteksi
- Informasi besarnya suhu yang terdeteksi ditampilkan pada bagian layar kiri atas namun tidak terlihat jelas.

Area histogram suhu

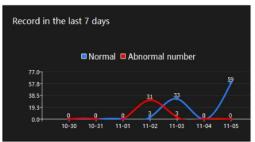

Hasil uji:

- Sensor yang terdapat pada perangkat mempengaruhi proses deteksi dan akurasi. Karena resolusi sensor hanya sebesar 32x32, maka obyek dari user hanya dapat ditangkap bagian dada hingga kepala.
- Pada Gambar 7 berikut adalah posisi kepala yang dapat terdeteksi dengan baik:

Gambar 7. Posisi user yang terdeteksi dengan baik

Pada Gambar 8 berikut adalah posisi badan yang tidak dapat terdeteksi dengan baik:

Gambar 8. Posisi user yang terdeteksi dengan baik


 Bila user menggunakan masker seperti yang terlihat pada Gambar 9, maka area yang tertutup masker tidak dapat terdeteksi dengan baik

Gambar 9. Hasil deteksi thermal bila user menggunakan masker

Infografik

Informasi statistik jumlah pross *scanning* ditampilkan dalam bentuk infografik.

Gambar 10. Grafik informasi hasil deteksi baik normal maupun abnormal

Hasil uji:

- Pada gambar 10 terlihat grafik yang menampilkan informasi berupa garis untuk jumlah terdeteksi status normal dan abnormal.
- Tidak terdapat fitur export data ke dalam format lain seperti CSV untuk kebutuhan pelaporan secara eksternal.

Data Statistik

Jumlah proses *scanning* yang telah dijalani ditampilkan dalam bentuk numerik seperti pada Gambar 11.

Gambar 11. Tampilan jumlah total orang yang telah melakukan proses scanning

Hasil uji:

- Tidak terdapat fitur rekap data dalam bentuk ekspor data ke format lain seperti CSV untuk kebutuhan pelaporan eksternal
- 2. Tidak terdapat fitur filter hasil tes berdasarkan tanggal tertentu

Riwayat Rekam

Data citra hasil *capture* merupakan kombinasi antara citra natural dan citra *histrogram thermal* seperti yang terlihat pada Gambar 12.

Gambar 12. File image JPG hasil capture

Hasil tes:

- Seluruh hasil snapshot tersimpan dalam folder Bin pada folder dimana aplikasi terpasang
- File snapshot rata-rata berukuran > 1MB disebabkan karena resolusi kamera yang full HD. Hal ini dapat mempengaruhi kebutuhan storage perlu disesuaikan. Misal dalam satu hari terdapat rata-rata 200 kali capture, maka kebutuhan storage harddisk komputer minimal 200MB -500MB per hari. Sehingga per bulan dapat diakumulasi 500MB*20 hari kerja = 10000MB atau 10GB per bulan.
- Pada file dokumentasi, tidak terdapat identifikasi baik berupa watermark, penamaan file, maupun pemisahan lokasi folder untuk data snapshot berstatus normal maupun abnormal.

4. KESIMPULAN DAN SARAN

Setelah melakukan pengujian pada aplikasi, berikut adalah rekomendasi yang diberikan untuk melengkapi fitur yang ada pada aplikasi adalah (1) perlu disediakan fitur login sebagai izin mengakses aplikasi. Hal ini disebabkan terdapat file dokumentasi snapshot dan manajemen perangkat kamera, (2) pada aplikasi perlu dilengkapi dengan fitur mengubah password untuk setiap perangkat kamera, (3) bila user mengalami lupa password, maka aplikasi perlu ditambahkan fitur manajemen user untuk setiap perangkat kamera yang terkoneksi ke aplikasi, (4) pada perangkat kamera sudah tertanam speaker yang digunakan untuk memberikan informasi proses dan hasil scanning, pada aplikasi perlu disediakan fitur yang memungkinkan admin dapat mengubah suara pesan maupun alarm menggunakan file format audio umumnya, (5) pemberian garis area deteksi diharapkan membantu meningkatkan akurasi deteksi, namun seringkali menyulitkan user saat proses scanning sehingga proses scanning tiap user menjadi lebih lama. Ukuran resolusi sensor thermal mempengaruhi area deteksi dari sensor tersebut, (6) perlu disediakan fitur export data hasil proses scanning ke dalam format umum seperti CSV dapat membantu fungsionalitas aplikasi. Hasil export dapat biasanya sangat berguna untuk pengolahan laporan lebih lanjut, (7) perlu disediakan fitur filter hasil proses scanning berdasarkan tanggal tertentu. Hal tersebut akan sangat membantu pengguna aplikasi untuk menyaring data dokumentasi hasil scanning pada periode tanggal tertentu, dan (8) pada file dokumentasi hasil capture, perlu dikelompokkan secara tersendiri untuk hasil deteksi normal dan abnormal. Sehingga membantu pengguna aplikasi mengumpulkan data sesuai kebutuhan untuk melakukan pelacakan.

5. REFERENSI

- [1] G. Batchuluun, D. T. Nguyen, T. D. Pham, C. Park, and K. R. Park, "Action recognition from thermal videos," *IEEE Access*, vol. 7, pp. 103893–103917, 2019, doi: 10.1109/ACCESS.2019.2931804.
- [2] Https://blog.thermoworks.com/, "Three Common Misconceptions About Infrared Thermometers," 2012. https://blog.thermoworks.com/tips/infraredthermometry/. diakses pada 2 Juni 2021.
- [3] D. J. Mamahit, "Detection Early Breast Cancer By Using Digital Infrared Image Based on Asymmetry Thermal," Detect. Early Breast Cancer By Using Digit. Infrared Image Based Asymmetry Therm., pp. 1–8, 2014.
- [4] M. S. Jadin, S. Taib, and S. Kabir, "Infrared thermography for assessing and monitoring electrical components within concrete structures," *Prog. Electromagn. Res. Symp.*, no. February 2016, pp. 786–789, 2011.
- [5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 580–587, 2014, doi: 10.1109/CVPR.2014.81.
- [6] S. Taib, M. Shawal, and S. Kabir, "Thermal Imaging for Enhancing Inspection Reliability: Detection and Characterization," *Infrared Thermogr.*, no. February 2015, 2012, doi: 10.5772/27558.
- [7] M. Shi, "Software Functional Testing from the Perspective of Business Practice," *Comput. Inf. Sci.*, vol. 3, no. 4, pp. 49–52, 2010, doi: 10.5539/cis.v3n4p49.
- [8] R. Jampani, N. Talasu, and R. Manjula, "Survey of Software Testing Techniques," no. April, 2016.
- [9] N. Anwar and S. Kar, "Review Paper on

- Various Software Testing Techniques & Strategies," *Glob. J. Comput. Sci. Technol.*, vol. 19, no. 2, pp. 43–49, 2019, doi: 10.34257/gjcstcvol19is2pg43.
- [10] M. M. Syaikhuddin, C. Anam, A. R. Rinaldi, and M. E. B. Conoras, "Conventional Software Testing Using White Box Method," *Kinetik*, vol. 3, no. 1, p. 67, 2018, doi: 10.22219/kinetik.v3i1.231.
- [11] K. Mohd. Ehmer and K. Farmeena, "A Comparative Study of White Box, Black Box and Grey Box Testing Techniques," Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 6, pp. 12– 15, 2012, doi: 10.1017/CBO9781107415324.004.
- [12] C. Baek, J. Jang, G. Jung, K. Choi, and S. Park, "A Case Study of Black-Box Testing for Embedded Software using Test Automation Tool," *J. Comput. Sci.*, vol. 3, no. 3, pp. 144–148, 2007, doi: 10.3844/jcssp.2007.144.148.
- [13] A. June, A. Sgvu, and V. Chandra, "Fuzzy Theory in Black Box Testing," *Int. J. Adv. Res. Comput. Sci. Technol.*, vol. 2, no. 2, pp. 289–291, 2014.
- [14] S. Nidhra, "Black Box and White Box Testing Techniques - A Literature Review," Int. J. Embed. Syst. Appl., vol. 2, no. 2, pp. 29–50, 2012, doi: 10.5121/ijesa.2012.2204.
- [15] T. Hidayat and M. Muttaqin, "Pengujian Sistem Informasi Pendaftaran dan Pembayaran Wisuda Online menggunakan Black Box Testing dengan Metode Equivalence Partitioning dan Boundary Value Analysis," J. Tek. Inform. UNIS JUTIS, vol. 6, no. 1, pp. 2252–5351, 2018, [Online]. Available: www.ccssenet.org/cis.
- [16] T. F. Gonzalez, "Handbook of approximation algorithms and metaheuristics," *Handb. Approx. Algorithms Metaheuristics*, pp. 1– 1432, 2007, doi: 10.1201/9781420010749.
- [17] C. Szegedy, S. Reed, D. Erhan, D. Anguelov, and S. Ioffe, "Scalable, High-Quality Object Detection," 2014, [Online]. Available: http://arxiv.org/abs/1412.1441.

Implementation of Blackbox Testing in Real-Time

ORIGINALITY REPORT

20% SIMILARITY INDEX

16%
INTERNET SOURCES

0%

PUBLICATIONS

9%

STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

9%

★ Submitted to Universitas Merdeka Malang

Student Paper

Exclude quotes

Off

Exclude matches

Off

Exclude bibliography