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Abstract. Tempe is a traditional food originating from Indonesia, which is made from the 

fermentation process of soybean using Rhizopus mold. The purpose of this study was to classify 

three quality levels of soybean tempe i.e., fresh, consumable, and non-consumable using a 

convolutional neural network (CNN) based deep learning. Four types of pre-trained networks 

CNN were used in this study i.e. SqueezeNet, GoogLeNet, ResNet50, and AlexNet. The 

sensitivity analysis showed the highest quality classification accuracy of soybean tempe was 

100% can be achieved when using AlexNet with SGDm optimizer and learning rate of 0.0001; 

GoogLeNet with Adam optimizer and learning rate 0.0001, GoogLeNet with RMSProp 

optimizer, and learning rate 0.0001, ResNet50 with Adam optimizer and learning rate 0.00005, 

ResNet50 with Adam optimizer and learning rate 0.0001, and SqueezeNet with RSMProp 

optimizer and learning rate 0.0001. In further testing using testing-set data, the classification 

accuracy based on the confusion matrix reached 98.33%. The combination of the CNN model 

and the low-cost digital commercial camera can later be used to detect the quality of soybean 

tempe with the advantages of being non-destructive, rapid, accurate, low-cost, and real-time. 

1. Introduction 

Indonesia, a country with more than 300 distinct native ethnic groups, has a variety of traditional foods 

[1]. One of the food products that are popular and often consumed by the Indonesian people is soybean 

tempe. Indonesia is the largest soybean tempe producing country globally and is the largest market for 

soybeans in Asia. The average consumption of soybean tempe per person per year in Indonesia is 

estimated at around 6.45 kg. Apart from being produced in Indonesia, since 1984, there have been 

several soybean tempe companies in Europe, the USA, and Japan [2]. Tempe is a traditional food 

originating from Indonesia, which is made from the fermentation process of soybean using Rhizopus 

mold [3]. The mold that grows on soybean seeds hydrolyzes complex compounds into simple 

compounds easily digested by humans [4]. Soybean tempe contains lots of dietary fiber, calcium, 

vitamins B, and iron. Soybean tempe can also be a functional food containing antibiotics to cure 

infections and antioxidants to prevent degenerative diseases (atherosclerosis, coronary heart disease, 
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diabetes mellitus, cancer, etc.) [5]. Soybean tempe also contains antibacterial substances that cause 

diarrhea, lower cholesterol, reduce hypertension, etc. The nutritional composition of soybean tempe, 

protein, fat, and carbohydrate content, does not change much compared to soybeans [6]. However, 

because of the digestive enzymes produced by soybean tempe mold, the protein, fat, and carbohydrates 

in soybean tempe are easier to digest in the body than those found in soybeans. Soybean tempe can be 

consumed by all ages, from infants to the elderly. Soybean tempe contains sufficient amounts of macro 

and micro minerals [7].  

The Indonesian National Standardization Agency has published the quality standard for soybean 

tempe, i.e., SNI 3144: 2009. The quality requirements for soybean tempe include: (1) normal smell, 

color and taste; (2) maximum water content of 65%; (3) maximum ash content of 1.5%; (4) fat content 

of at least 10%; (5) protein content of at least 16%; (6) the maximum crude fibre content is 2.5%; (7) 

metal contamination (Cd max 0.2, Pb max 0.25, Sn max 40, Hg max 0.03); (8) contamination of As max 

0.25; (9) microbial contamination (coliform max 10). However, the external appearance of soybean 

tempe quality requirements is still not determined and has not been widely studied. The external 

appearance of soybean tempe is the easiest, fastest, non-destructive, and inexpensive way to determine 

the feasibility of the consumption and the quality levels of soybean tempe. 

Many studies have proven the effectiveness of computer vision and artificial intelligence in detecting 

the quality of food products [8]. Hendrawan et al. [9] have successfully used computer vision to inspect 

the quality of Luwak coffee green beans using an artificial neural network with an accuracy result of the 

mean square error validation of 0.0442. Hendrawan et al. [10] have also succeeded in detecting the 

quality of soybean tempe using computer vision based on texture analysis with a validation error value 

of 2.39%. Computer vision systems have the potential to replace manual methods of detection, therefore 

gaining wide acceptance in industries as a tool for quality inspection of numerous food products, for 

example, food grain quality evaluation [11], fruit quality inspection [12], and vegetable quality detection 

[13]. Saha and Manickavasagan [14] have examined the benefits of computer vision in evaluating the 

quality of food products, including detecting mechanical damage in mushrooms, detecting cold injury 

in peaches and apples, and detecting adulteration in honey, detection of mites in flour, etc. Tang et al. 

[15] have successfully classified grape disease using a convolutional neural network (CNN) and 

computer vision with the final model that achieves 99.14% accuracy. Shen et al. [16] have also 

succeeded in detecting impurities in wheat by using CNN and computer vision with a recognition 

accuracy of 97.56%. Many studies on deep learning have shown CNN's performance to classify the 

quality of food products accurately. The use of computer vision and CNN methods can be used to 

classify the quality of soybean tempe based on external appearances in a non-destructive, rapid, low-

cost, and accurate manner. The purpose of this study was to classify three quality levels of soybean 

tempe i.e., fresh, consumable, and non-consumable using CNN.  

2. Material and methods 

This study used a low-cost digital commercial camera to collect soybean tempe image data. The image 

acquisition process was carried out using a closed black box with evenly distributed lighting over the 

surface of the soybean tempe object. A low-cost digital commercial camera (Logitech C270 HD camera 
3-megapixel snapshots) was used for image acquisition with a distance of 300 mm from the camera to 

the object's surface. The image was obtained from the image acquisition process with a resolution of 

300 × 300 pixels in JPEG format. A total of 472 image data with three quality categories i.e., fresh, 

consumable, and non-consumable, were used as training and validation data. The augmentation process 

of image data is carried out to increase the amount of data. Parameter settings for data augmentation 

include random rotation min = 0 and max = 90 degrees, and random rescaling min = 1 and max = 2. All 

image data, then divided into two parts i.e. 70% for training data and 30% for validation data. Figure 1 

shows an example of soybean tempe with fresh, consumable, and non-consumable qualities. It can be 

seen that soybean tempe in each class looks almost identical and is difficult to distinguish by 

observations from external appearances.  
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(a) (b) (c) 

Figure 1. 300×300 pixels image of soybean tempe in different quality categories: a) fresh; b) 

consumable; c) non-consumable. 

 

 

 

(a) (b) 

 
 

(c) (d) 

Figure 2. Schematic representation of CNN model: (a) SqueezeNet; (b) ResNet50; (c) 

AlexNet; (d) GoogLeNet. 
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The deep learning method was used to model image data in categorizing the quality of soybean 

tempe. Four types of CNN pre-trained networks (as shown in Figure 2) [17] were used in this study i.e. 

SqueezeNet, GoogLeNet, ResNet50, and AlexNet. The CNN SqueezeNet algorithm was described in 

the research of Ucar and Korkmaz [18], GoogLeNet in the study of Raikar et al. [19], ResNet50 in the 

study of Mkonyi et al. [20], and AlexNet on Jiang et al. [21]. The CNN structure for classifying soybean 

tempe quality, in general, can be seen in Figure 3. Some of the parameters that were set on each CNN 

pre-trained included: optimizer (SGDm, Adam, RMSProp) [22], initial learning rate (0.00005 and 

0.0001) [23], epoch 20, minibatch size 20 [24], sequence padding value = 0, sequence padding direction 

= right, L2Regularization = 0.00001, learning rate drop factor = 0.1, learning rate drop period = 10, and 

momentum = 0.9. After the CNN modeling process had been carried out, the best model was tested on 

20 data sets in each quality category. The testing data set was image data of soybean tempe taken 

separately from training and validation data. The performance of the CNN model was measured from 

the classification accuracy of the testing-set data using the confusion matrix method [25]. 

 

 
Figure 3. Structure of CNN model to classify soybean tempe quality. 

3. Results and discussion 

The performance of CNN's pre-trained network can be seen in Table 1. Four models of the pre-trained 

network were used to classify the quality of soybean tempe, i.e., AlexNet, GoogLeNet, ResNet50, and 

SqueezeNet. Sensitivity analysis was carried out by varying the optimizer method, i.e., SGDm, Adam, 

and RMSProp, and varying the initial learning rates of 0.00005 and 0.0001. The obtained results showed 

that the four pre-trained networks CNN models produced different classification accuracy with an 

accuracy ranging from the lowest 89.44% to the highest 100%. Overall, based on the value of the initial 

learning rate, it was proven that the learning rate of 0.0001 produced a higher average classification 

accuracy of 97.13% compared to the learning rate of 0.00005, which resulted in an average classification 

accuracy of 96.19%. This is in line with research conducted by Thenmozhi and Redy [22], where a 

learning rate of 0.0001 works better than a learning rate of 0.00005 or 0.0005. Based on CNN's pre-
trained network architecture, it can be seen that the ResNet50 model had the highest average 

classification of 98.94%, followed by AlexNet, GoogLeNet, and SquezeeNet with average classification 

accuracy values of 96.83%, 96.01%, and 94.84%, respectively. These results are in line with research 

conducted by Sravan et al. [26] which proved the performance effectiveness of ResNet50 compared to 

other CNN pre-trained network models. However, Table 1 also shows the weakness of ResNet50 is that 

the training process required was very long with an average learning time of 85.16 minutes. The fastest 

learning process was achieved when using the CNN SqueezeNet model, which was about 17 minutes. 

Based on the optimizer method used, it was proven that RMSProp produced the highest average 

classification accuracy of 98.15% compared to Adam and SGDm which had an average classification 

accuracy of 96.39% and 95.42%, respectively. It can be concluded that the RMSProp optimizer works 

very well in CNN modeling [27]. The overall sensitivity analysis results showed the highest 
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classification accuracy was 100% which can be achieved when using six CNN models i.e., AlexNet with 

SGDm optimizer and learning rate of 0.0001; GoogLeNet with Adam optimizer and learning rate 

0.0001, GoogLeNet with RMSProp optimizer, and learning rate 0.0001, ResNet50 with Adam optimizer 

and learning rate 0.00005, ResNet50 with Adam optimizer and learning rate 0.0001, and SqueezeNet 

with RSMProp optimizer and learning rate 0.0001. The training process in the six CNN models can be 

seen in Figure 4. From Figure 4, all CNN models showed an effective training process performance 

where the accuracy value increased with increasing iteration. The opposite applied to the loss value, 

where the loss value decreased with increasing iteration. The six best CNN models showed almost the 

same patterns. The training and validation performance chart patterns appeared to move quickly at the 

initial epoch and converged at the next epoch where the accuracy value moved increasingly converging 

to a value close to 100% and the loss value converged closer to the value 0. The validation value, both 

accuracy and loss moved according to the training value. In terms of the stability of the learning process, 

it can be seen in Figure 4 that ResNet50 with Adam's optimizer and a learning rate of 0.00005 showed 

a reasonably stable training and validation process compared to other CNN models. 

  

Table 1. Performance of pre-trained network CNN to classify soybean tempe quality. 

Architecture Optimizer Learning rate Accuracy (%) Time (minutes) 

AlexNet SGDm 0.00005 99.30 18 

 Adam 0.00005 95.07 18 

 RMSProp 0.00005 99.30 17 

 SGDm 0.0001 100 17 

 Adam 0.0001 89.44 18 

 RMSProp 0.0001 97.89 18 

GoogLeNet SGDm 0.00005 93.66 37 

 Adam 0.00005 92.25 35 

 RMSProp 0.00005 97.18 34 

 SGDm 0.0001 92.96 34 

 Adam 0.0001 100 34 

 RMSProp 0.0001 100 33 

ResNet50 SGDm 0.00005 98.59 81 

 Adam 0.00005 100 81 

 RMSProp 0.00005 99.30 86 

 SGDm 0.0001 97.18 85 

 Adam 0.0001 100 86 

 RMSProp 0.0001 98.59 92 

SqueezeNet SGDm 0.00005 90.85 17 

 Adam 0.00005 95.77 17 

 RMSProp 0.00005 92.96 17 

 SGDm 0.0001 90.85 17 

 Adam 0.0001 98.59 17 

 RMSProp 0.0001 100 17 

 

After the best results were obtained in the training and validation process, the next step was to test 

the CNN model's performance using the testing-set data. Of the six best CNN models when tested using 

the testing-set data, they all produced the same performance, the same accuracy value, and the same 

error value. So that for the confusion matrix in this study, one confusion matrix result was shown 

representative of the best six CNN models. The results of the confusion matrix can be seen in Figure 5. 

From the confusion matrix results, it appeared that the average accuracy of the testing-set data was 

98.33%, where this accuracy value was very high for classifying the quality of soybean tempe. In detail, 

the soybean tempe class of fresh and consumable, the CNN model accurately calculated 100% without 
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the slightest error. While in the non-consumable soybean tempe class, the CNN model only made an 

error of 5% (based on the confusion matrix calculation) and was still able to classify non-consumable 

soybean tempe with an accuracy of 95%. With this very high accuracy result, it can be concluded that 

the CNN model that had been built can work effectively to classify soybean tempe into fresh, 

consumable, and non-consumable quality classes. In future work, the combination of the CNN model 

and the low-cost digital commercial camera can be used to detect the quality of soybean tempe with the 

advantages of being non-destructive, rapid, accurate, low-cost, and real-time (provide output 

instantaneously). 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Performance of CNN to classify soybean tempe using pre-trained network: (a) AlexNet 

(optimizer = SGDm, learning rate = 0.0001); (b) GoogLeNet (optimizer = Adam, learning rate = 

0.0001); (c) GoogLeNet (optimizer = RMSProp, learning rate = 0.0001); (d) ResNet50 (optimizer = 

Adam, learning rate = 0.00005); (e) ResNet50 (optimizer = Adam, learning rate = 0.0001); (f) 

SqueezeNet (optimizer = RMSProp, learning rate = 0.0001). 
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 Figure 5. Performance of testing-set data using a 

confusion matrix. 

 

4. Conclusions 

The quality of soybean tempe was divided into three classes i.e. fresh, consumable, and non-consumable. 

CNN's pre-trained network models used in this study included AlexNet, GoogLeNet, ResNet50, and 

SqueezeNet. The research results showed very high accuracy in the training and validation process. Six 

best CNN models i.e. AlexNet with SGDm optimizer and 0.0001 learning rate; GoogLeNet with Adam 

optimizer and learning rate 0.0001, GoogLeNet with RMSProp optimizer and learning rate 0.0001, 

ResNet50 with Adam optimizer and learning rate 0.00005, ResNet50 with Adam optimizer and learning 

rate 0.0001, and SqueezeNet with RSMProp optimizer and learning rate 0.0001 were able to achieve 

training and validation accuracy up to 100%. The classification accuracy based on the confusion matrix 

reached 98.33% in further testing using the testing-set data. The combination of the CNN model and the 

low-cost digital commercial camera can later be used to detect the quality of soybean tempe with the 

advantages of being non-destructive, rapid, accurate, low-cost, and real-time. 
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