Sustainability: Contributions through Science and Technology

Series Editor: Michael C. Cann, PhD

Nanotechnologies in Green Chemistry and Environmental Sustainability

Edited by Samsul Ariffin Abdul Karim

CRC Press

First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2023 selection and editorial matter, Samsul Ariffin Abdul Karim; individual chapters, the contributors

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-34132-3 (hbk) ISBN: 978-1-032-34150-7 (pbk) ISBN: 978-1-003-32074-6 (ebk)

DOI: 10.1201/9781003320746

Typeset in Times by Newgen Publishing UK

Contents

Preface	IX
Editor Biog	raphyxi
List of Cont	ributors xiii
Chapter 1	Introduction1
	Samsul Ariffin Abdul Karim
Chapter 2	Phase Identification, Morphology, and Compressibility of Scallop Shell Powder (Amusium Pleuronectes) for Bone Implant Materials
	Poppy Puspitasari and Diki Dwi Pramono
Chapter 3	Simulation for Oil Pan Production against Its Porosity, Shrinkage, and Niyama Criterion
	Poppy Puspitasari, Aulia Amar, Suprayitno, Dewi 'Izzatus Tsamroh, Samsul Ariffin Abdul Karim, and Mochamad Achyarsyah
Chapter 4	Analysis of the Thermophysical Properties of SAE 5W-30 Lubricants with the Addition of Al ₂ O ₃ , TiO ₂ , and Hybrid Al ₂ O ₃ -TiO ₂ Nanomaterials on the Performance of Motorcycles
	Poppy Puspitasari, Syafira Bilqis Khoyroh, Avita Ayu Permanasari, Muhammad Mirza Abdillah Pratama, and Samsul Ariffin Abdul Karim
Chapter 5	Heat Transfer Rate and Pressure Drop Characteristics on

Avita Ayu Permanasari, Fajar Muktodi, Poppy Puspitasari, Sukarni Sukarni, and Siti Nur Azella Zaine

v Copyrighted material

Contents

Chapter 6	Microstructure Change of Aluminum 6061 through Natural and Artificial Aging
	Dewi 'Izzatus Tsamroh, Poppy Puspitasari, Muchammad Riza Fauzy, Agus Suprapto, and Pungky Eka Setyawan
Chapter 7	Characterization of Self-Healing Concrete Incorporating Plastic Waste as Partial Material Substitution
	Christian Hadhinata, Ananta Ardyansyah, Viska Rinata, and M. Mirza Abdillah Pratama
Chapter 8	Graded Concrete: Towards Eco-friendly Construction by Material Optimisation
	M. Mirza Abdillah Pratama, Poppy Puspitasari, and Hakas Prayuda
Chapter 9	Performance of Surgical Blades from Biocompatible Bulk Metallic Glasses and Metallic Glass Thin Films for Sustainable Medical Devices Improvement
Chapter 10	Synthesis and Characterization of Zinc Ferrite as Nanofluid Heat Exchanger Deploying Co-precipitation Method169 Poppy Puspitasari, Yuke Nofantyu, Avita Ayu Permanasari, Riana Nurmalasari, and Andika Bagus Nur Rahma Putra
Chapter 11	A Study of Risk Assessment in the Nanomaterials Laboratory of Mechanical Engineering Department and the Materials Physics Laboratory of Department of Physics at State University of Malang
	Djoko Kustono, Desi Puspita Anggraeni, and Poppy Puspitasari

Herlin Pujiarti, Nabella Sholeha, and Nadiya Ayu Astarini

Contents

Chapter 13	Characterizations of Amino-Functionalized Metal-Organic Framework Loaded with Imidazole	227
	Mohd Faridzuan Majid, Hayyiratul Fatimah Mohd Zaid, and Danialnaeem Emirzan Bin Mardani	
Chapter 14	Green Removal of Bisphenol A from Aqueous Media Using Zr-Based Metal-Organic Frameworks	.243
	Afzan Mahmad, Teh Ubaidah Noh, and Maizatul Shima Shaharun	
Index	******	259

Preface

Green chemistry has been developed as a natural evolution to prevent the pollution. There are 12 principles in green chemistry. There is the need for a book that could provide the state of the art of green chemistry especially among the Association of Southeast Asian Nations (ASEAN) countries. This book is a collection of the works that have been conducted by researchers at various universities in ASEAN countries. This book highlights the current state of the studies in applied sciences towards the sustainability of the green science and technology, including modelling, nanotechnology, nanofluids, nanosystems, smart materials and applications, and solar and fuel cells technology. Since the introduction of Industrial Revolution 4.0 (IR 4.0), most countries all over the world are encouraging the industrial partners to utilizing IR 4.0 in all aspects of the product life cycle. This will enable all the processes to be automated. To achieve this, it is important that we have the knowledge and expertise as well as abilities to fully utilize IR4.0. Basically, there are seven pillars under IR4.0. This book consists of 14 chapters that cover simulation and additive manufacturing that result in the enhancement of the reuse of products or materials; enhancement of the use of renewable materials; improvement of the longevity of a material or device as well as prevention of waste. Each contributed chapter can be regarded as a self-standing contribution. The main outcome of this book is in line with the United Nations Sustainable Development Goals (UN SDG) that lead to the green chemistry, i.e., SDG No. 7: Affordable and Clean Energy and SDG No. 9: Innovation, Industry, and Infrastructure. It would be a dream that our world would be able to meet and achieve all 17 UN SDGs through the green chemistry.

I would like to thank all the contributors who provided an excellent contribution for this book. I am forever grateful for their commitment and contribution to this book. A special thank you to the publishing staff at Taylor & Francis Group/CRC Press for their kind help. I would also like to acknowledge the Faculty of Computing and Informatics, Universiti Malaysia Sabah, for the financial and computing facilities supports that have made the completion of this book possible.

This book is suitable for all postgraduates and researchers working in this rapid growing research areas.

> Samsul Ariffin Abdul Karim Kota Kinabalu, Malaysia May 2022

ix Copyrighted material

Editor Biography

Samsul Ariffin Abdul Karim is an Associate Professor with Software Engineering Programme, Faculty of Computing and Informatics, Universiti Malaysia Sabah (UMS), Malaysia. He obtained his PhD in Mathematics from Universiti Sains Malaysia (USM). He is a professional technologist registered with Malaysia Board of Technologists (MBOT), No. Perakuan PT21030227.

His research interests include numerical analysis, machine learning, approximation theory, optimization, science, and engineering education as well as wavelets. He has published more than 140 papers in journals and conferences, including three edited conferences volume

and 60 book chapters. He was the recipient of Effective Education Delivery Award and Publication Award (Journal & Conference Paper), UTP Quality Day 2010, 2011 and 2012, respectively.

He was a certified WOLFRAM Technology Associate, Mathematica Student Level. He has also published ten books with Springer Publishing, including five books with Studies in Systems, Decision and Control (SSDC) series, one book with Taylor and Francis/CRC Press, one book with IntechOpen and one book with UTP Press.

Recently he has received the Book Publication Award in UTP Quality Day 2020 for his book Water Quality Index Prediction Using Multiple Linear Fuzzy Regression: Case Study in Perak River, Malaysia, which was published by SpringerBriefs in Water Science and Technology in 2020.

Contributors

Mochamad Achyarsyah

Foundry Department, Bandung Polytechnic of Manufacturing, No. 21 Kanayakan Street, Bandung, West Java, Indonesia

Aulia Amar

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Aminnudin

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Desi Puspita Anggraeni

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Ananta Ardyansyah

Faculty of Science, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Nadiya Ayu Astarini

Physics Department, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Christian Hadhinata

Civil Engineering Department, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Samsul Ariffin Abdul Karim

Software Engineering Programme Faculty of Computing and Informatics Universiti Malaysia Sabah Jalan UMS, 88400 Kota Kinabalu Sabah, Malaysia Data Technologies and Applications (DaTA) Research Group, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

Syafira Bilqis Khoyroh

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Djoko Kustono

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Afzan Mahmad

Fundamental and Applied Sciences

Muchammad Riza Fauzy

Department of Industrial Engineering, Faculty of Engineering, University of Merdeka Malang, Jalan Raya Terusan Dieng 62-64, Malang 65156, Indonesia Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

xiii Copyrighted material

Mohd Faridzuan Majid

Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Danialnaeem Emirzan Bin Mardani

Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Fajar Muktodi

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Yuke Nofantyu

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Teh Ubaidah Noh

Institute of Bioproduct Development, Universiti Teknologi Malaysia

Riana Nurmalasari

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Avita Ayu Permanasari

Department of Mechanical Engineering,

Yanuar Rohmat Aji Pradana

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Diki Dwi Pramono

Department of Mechanical Engineering, Faculty of Engineering, State University of Malang, Jl. Semarang 5, Malang, 65145, Indonesia

Muhammad Mirza Abdillah Pratama

Civil Engineering Department, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Hakas Prayuda

Department of Civil Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta, Indonesia

Herlin Pujiarti

Physics Department, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Centre of Advanced Materials for Renewable Energy (CAMRY), State University of Malang, Jl. Semarang No 5, Malang 65145, Indonesia

Poppy Puspitasari

Department of Mechanical Engineering, Faculty of Engineering, State University of Malang, Jl. Semarang 5, Malang, 65145, Indonesia Centre of Advanced Materials and Renewable Energy, State University of Malang, Jl. Semarang 5, Malang, 65145, Indonesia

Faculty of Engineering, State University of Malang, Jl. Semarang 5, Malang, 65145, Indonesia Center of Advance Materials and Renewable Energy, State University of Malang, Jl. Semarang 5, Malang, 65145, Indonesia

Andika Bagus Nur Rahma Putra

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Viska Rinata

Faculty of Science, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Pungky Eka Setyawan

Department of Mechanical Engineering, Faculty of Engineering, University of Merdeka Malang, Jl. Raya Terusan Dieng No. 62-64, Malang 65156, Indonesia

Maizatul Shima Shaharun

Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Nabella Sholeha

Physics Department, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Sukarni Sukarni

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Agus Suprapto

Suprayitno

Department of Mechanical Engineering, Faculty of Engineering, State University of Malang, Jl. Semarang 5, Malang, 65145, Indonesia

Heru Suryanto

Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

Dewi 'Izzatus Tsamroh

Department of Mechanical Engineering, Faculty of Engineering, University of Merdeka Malang, Jl. Raya Terusan Dieng No. 62-64, Malang 65156, Indonesia

Hayyiratul Fatimah Mohd Zaid

Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Siti Nur Azella Zaine

Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Department of Mechanical Engineering, Faculty of Engineering, University of Merdeka Malang, Jl. Raya Terusan Dieng No. 62-64, Malang 65156, Indonesia

6 Microstructure Change of Aluminum 6061 through Natural and Artificial Aging

Dewi 'Izzatus Tsamroh,1" Poppy Puspitasari,^{2,3} Muchammad Riza Fauzy,⁴ Agus Suprapto,⁵ and Pungky Eka Setyawan⁶ ^{1,5,6} Faculty of Engineering, University of Merdeka Malang, Indonesia ² Faculty of Engineering, Universitas Negeri Malang, Indonesia ³ Centre of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Indonesia ⁴ Faculty of Engineering, University of Merdeka Malang, Indonesia ⁴ Faculty of Engineering, University of Merdeka Malang, Indonesia

izza@unmer.ac.id

CONTENTS

6.1	Introd	uction: B	ackground	
6.2	Alumi	num		
	6.2.1	Pure Al	uminum	
	6.2.2	Alumin	um Alloy	
		6.2.2.1	Al-Cu Alloy	
		6.2.2.2	Al-Mn Alloy	
		6.2.2.3	Al-Si Alloy	
		6.2.2.4	Al-Mg Alloy	
		6.2.2.5	Al-Mg-Si Alloy	
6.3	Precip	itation H	ardening	
	6.3.1	Natural	Aging	90
	6.3.2	Artificia	al Aging	
6.4	Micro	structure	Change	
6.5	Concl	usion	-	

DOI: 10.1201/9781003320746-6

6 Microstructure Change of Aluminum 6061 through Natural and Artificial Aging

()

Dewi 'Izzatus Tsamroh,^{1*} Poppy Puspitasari,^{2,3} Muchammad Riza Fauzy,⁴ Agus Suprapto,⁵ and Pungky Eka Setyawan⁶ ^{1,5,6} Faculty of Engineering, University of Merdeka Malang, Indonesia ² Faculty of Engineering, Universitas Negeri Malang, Indonesia ³ Centre of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Indonesia ⁴ Faculty of Engineering, University of Merdeka Malang, Indonesia ^{*} Corresponding author: Dewi 'Izzatus Tsamroh, izza@unmer.ac.id

CONTENTS

 (\bullet)

Introduction: Background	
Aluminum	
6.2.1 Pure Aluminum	85
6.2.2 Aluminum Alloy	85
6.2.2.1 Al-Cu Alloy	85
6.2.2.2 Al-Mn Alloy	
6.2.2.3 Al-Si Alloy	
6.2.2.4 Al-Mg Alloy	
6.2.2.5 Al-Mg-Si Alloy	
Precipitation Hardening	
6.3.1 Natural Aging	
6.3.2 Artificial Aging	
Microstructure Change	
Conclusion	
	Introduction: Background Aluminum 6.2.1 Pure Aluminum 6.2.2 Aluminum Alloy 6.2.2.1 Al-Cu Alloy 6.2.2.2 Al-Mn Alloy 6.2.2.3 Al-Si Alloy 6.2.2.4 Al-Mg Alloy 6.2.2.5 Al-Mg-Si Alloy Precipitation Hardening 6.3.1 Natural Aging 6.3.2 Artificial Aging Microstructure Change Conclusion

DOI: 10.1201/9781003320746-6

()

۲

6.1 INTRODUCTION: BACKGROUND

Aluminum alloy is a kind of material that is widely used in the world. Recently, the use of aluminum has high demand and it will increase rapidly over the years (Puspitasari et al., 2016). This can be up to 9.9% per year in tons (Tsamroh, 2021). In Indonesia, the Ministry of Industry targeted that Indonesia should be able to produce up to 1.5–2 million tons of aluminum by 2025 (Indonesia, 2018). This high demand is due to the ongoing development of the manufacturing industry. The high use of aluminum is attributed to its several beneficial properties, including being lightweight, ductile, and resistant to corrosion; besides, it can also be recycled (Woodford, 2021). Figure 6.1 shows the various uses of aluminum.

From Figure 6.1, it can be known that aluminum is widely used as a transportation component. For example, the aerospace industry uses aluminum for up to 90% of its components (Rambabu et al., 2017). Many kinds of automotive components are made of aluminum, such as valves, engine blocks, etc. (Ogunsemi et al., 2021). Due to its widespread use in various fields, aluminum needs to be improved in its properties continuously. The increasing use of aluminum alloys certainly affects the production and consumption of aluminum in the world. Recently, research on aluminum alloy has been conducted in many countries, for example, China, the USA, UAE, India, etc. (Woodford, 2021).

Aluminum has been classified into seven series. One of them is aluminum 6061, which is a part of series 6xxx. Aluminum 6061 consists of aluminum-magnesium-silicon, one of the treatable heat alloys, and has medium strength (Rajasekaran et al., 2012). However, compared to other metals or other aluminum series such as the 2xxx

FIGURE 6.1 The use of aluminum in several sectors (Based on Woodford, 2021).

()

series, aluminum 6061 has lower strength (Nulhaqem & Abdul, 2013). Therefore, effort is required to make better its properties, especially its mechanical properties. Aluminum 6061 is a material widely used in the industrial world such as automotive and aerospace because it has high strength, is lightweight, and is corrosion-resistant. This alloy is commonly applied in the transportation industry, such as truck frames, rail coaches, shipbuilding operations, and military and commercial bridges (Abo Zeid, 2019).

 $(\mathbf{0})$

One of the uses of aluminum alloy AA 6061 in the aerospace world is the wings and body of small-scale aircraft. Meanwhile, in the automotive industry, AA6061 is used to manufacture several types of important vehicle parts, such as wheels, panels, and even in-vehicle structures (Wardani et al., 2022). This material is widely used because it has good extrusion, formability, and weldability. In addition, this material also has medium hardness and strength, good corrosion resistance, and a good surface finish (Andoko et al., 2020).

Various processes can be applied to make better the properties of aluminum, such as mechanical and physical properties (Tsamroh et al., 2018). One of them is heat treatment. One kind of heat treatment is aging (Chacko & Nayak, 2014); this treatment can produce homogeneous and evenly distributed precipitates so that an optimal increase in the mechanical properties of the material could be obtained (Rymer et al., 2021). While the aging process is of several kinds, aging treatments that are often used to improve mechanical properties are natural aging and artificial aging (Cochard et al., 2017).

Artificial aging is the aging for aluminum alloys which are treated with age hardening in a hot state. In this study, the strength of AA6061 will be increased through by combining the treatments of natural aging and artificial aging, but this study focuses on the microstructural changes that occur during the aging process. Several studies using artificial aging methods that aim to improve the material's mechanical properties have been carried out on aluminum alloy AI 2024 at a temperature of 0°C–177 °C for 20 hours and have shown an increase in hardness (Prudhomme et al., 2018). The application of the artificial aging treatment on aluminum alloy AI 7075 with a temperature of 120°C with time variations for 60, 120, 180, and 240 minutes achieved a maximum increase in hardness at 120 minutes of holding (Lee et al., 2018). Furthermore, the Al-Si-Mg-Cu alloy with artificial aging treatment achieved maximum tensile strength at an aging temperature of 180°C with a holding time of 240 minutes (Jin et al., 2018). Aluminum alloy AA1350-H19 gained the highest tensile strength in the artificial aging treatment at a temperature of 200 °C for 4 hours of holding (Flores et al., 2018).

Based on the explanation above, it is necessary to study how changes in the microstructure of Al6061 due to natural aging and artificial aging heat treatments can affect the mechanical properties of the material. Two important parameters strongly influence changes in the microstructure of Al6061, namely, heating temperature and holding time (Tsamroh et al., 2018). The heating temperature and holding time used in the heat treatment should be determined precisely; the use of a heating temperature that is too high and holding for a long time will actually damage the material microstructure. This will also affect the mechanical properties of the material.

۲

 $(\mathbf{0})$

6.2 ALUMINUM

Materials have been classified into four major materials: metal, composite, ceramic, and fiber. Metal is divided into ferrous metals and non-hero metals. In general, aluminum can be classified into three big groups: wrought non-heat-treatable alloys, wrought heat-treatable alloys, and casting alloys (Davis, 1993). Meanwhile, aluminum casting alloys are classified into two types: alloys that have the ability to be treated by using heat treatment and alloys that do not have the ability to be treated by using heat treatment. Table 6.1 presents the aluminum classification and the aluminum alloy naming code.

Aluminum is obtained from certain types of clay (bauxite). Bauxite is first separated from pure alum (aluminum oxide). Bauxite is one of the most important materials for aluminum production, which is hydrated aluminum oxide containing 1 to 20% Fe_2O_3 ; 1 to 10% silicate to a lesser extent of zirconium, titanium, vanadium, and several transition metal oxides; 20 to 30% is water, and 50 to 60% Al_2O_3 . Bauxite can be purified by using the process of Bayer. By filtration, sodium hydroxide can dissolve the crude bauxite and be separated from hydrated iron oxide and other insoluble foreign substances (Davis, 2001).

Then the molten aluminum oxide is calcined by an electrical procedure. Because the melting temperature of aluminum oxide is very high, namely, 2050°C, the processing of aluminum is very difficult. Aluminum metal has the symbol Al, which has a specific gravity of 2.6–2.7 with a melting point of 659°C. Aluminum is a soft metal and is harder than lead but softer than zinc. The color of aluminum is bluish-white. Aluminum can be produced through electrolysis process. The electrolysis process developed for industrial production is the Hall–Heroult electrolysis process. The process is electrolysis of alumina (Al₂O₃) solution in molten cryolite (Na₃AlF₆) at a temperature of 960°C to produce molten aluminum.

TABLE 6.1				
Aluminum	Classification	and	Naming	Code

Aluminum Type	Classification	Naming Code
Aluminum alloy for machining	Wrought non-heat-treatable alloy	Pure Al (1000 series)
		Al-Mn Alloy (3000 series)
		Al-Si Alloy (4000 series)
		Al-Mg Alloy (5000 series)
	Wrought heat-treatable alloy	Al-Cu Alloy (2000 series)
		Al-Mg-Si Alloy (6000 series)
		Al-Zn Alloy (7000 series)
Aluminum alloy for casting	Non-heat-treatable casting alloy	Al-Si Alloy (Silumin)
		Al-Mg Alloy (Hydronarium)
	Heat-treatable casting alloy	Al-Cu Alloy (Lautal)
		Al-Si-Mg Alloy (Silumin, Lo-ex)
Source: Irawan, 2015.		

 (\mathbf{r})

6.2.1 PURE ALUMINUM

Aluminum is obtained in the molten state by electrolysis, which generally attains purity of 99.85% by weight. However, if further electrolysis is carried out, aluminum will be obtained with a purity of 99.99%. Corrosion resistance varies with purity; generally, 99.0% or above purity can be used in resistant air for many years. The electrical conductivity of Al is about 65% of the electrical conductivity of copper, but its density is about one-third of that of copper, so it is possible to expand its crosssection. Therefore, it can be used for cables and in various forms, such as a thin sheet (foil). Al with a purity of 99.0% can be used in this case. Al with that level of purity is used for reflectors that require high reflectivity and electrolytic coders.

 (\blacklozenge)

6.2.2 ALUMINUM ALLOY

Aluminum alloys are grouped in various standards by various countries in the world. However, the most well-known and perfect classification is the Aluminum Association (AA) standard in America which is based on the previous standard from Aluminum Company of America (Alcoa).

Table 6.2 presents the physical characteristics of aluminum.

6.2.2.1 Al-Cu Alloy

()

Al-Cu and Al-Cu-Mg alloys are one of the main aluminum alloys. Copper is the main alloying element in aluminum in the 2000 series aluminum, which is often added with Mg as an additional alloying element (Davis, 2001). Al-Cu-Mg alloys contain 4% Cu and 0.5% Mg, which can harden greatly within a few days by aging at ordinary temperatures after solution heat treatment. Aluminum alloyed with Cu has poor corrosion resistance, so it is necessary to coat the surface with pure aluminum or a corrosion-resistant aluminum alloy (alclad plate). However, the alloy is used as an aircraft material (Surdia & Saito, 1999). Aluminum and copper alloys (Al-Cu alloys) are aluminum alloys known as duraluminum or super duraluminum. Duraluminum is also often referred to as duralumin or duralium (Junkers, 2014).

TABLE 6.2 Physical Characteristics of Aluminum

Character	High Pure Aluminum
Crystal structure	FCC
Density at 20°C (sat. 10 ³ kg/m ³)	2.698
Melting point (°C)	660.1
Wire heat creep coefficient 20°C~100°C (106/K)	23.9
Heat conductivity 20°C~400°C (W/(m-K))	238
Electrical resistance 20°C (10 ⁻⁸ KΩ-m)	2.69
Modulus of elasticity (GPa)	70.5
Stiffness modulus (GPa)	26.0

()

 (\blacklozenge)

6.2.2.2 Al-Mn Alloy

Manganese (Mn) is the main element in 3000 series aluminum alloys. Generally, this alloy is an alloy that cannot be heat treated but has 20% more strength than 1000 series aluminum (Davis, 2001). The addition of the element Mn to aluminum can strengthen aluminum without reducing its corrosion resistance and is used to make corrosionresistant alloys. The alloys Al-1.2% Mn and Al-1.2%Mn-1.0%Mg are alloys 3003 and 3004 that are used as corrosion-resistant alloys without heat stiffening (Surdia & Saito, 1999). This alloy is often used for kitchen utensils and panels (Irawan, 2015).

6.2.2.3 Al-Si Alloy

The main alloying element in 4000 series aluminum alloys is silicon. Silicon can be added in sufficient quantities (nearly 12%). The addition of silicon elements to the alloy lowers its melting range without causing the alloy to become brittle. This alloy is widely used in welding wire as brazing (Davis, 2001). Al-Si alloys have very good fluidity, have a good surface, have no heat flexibility, and are very good as alloy castings (silumin). This alloy also has good corrosion resistance, is very light, has a small expansion coefficient, and is a good conductor of electricity and heat. Al-12%Si alloys are widely used for cast alloys (silumin). The alloy that is treated with dissolution and aging is called silumin. The properties of silumin can be increased by applying heat treatment and slightly improved by alloying elements. Generally, alloys with 0.15–0.4% Mn and 0.5% Mg are used. Alloys that require heat treatment are added with Mg as well as Cu and Ni to provide hardness when hot; these materials are commonly used for motor pistons (Surdia & Saito, 1999).

6.2.2.4 Al-Mg Alloy

(�)

The 5000 series aluminum alloy is mainly alloyed with Mg. When combined with manganese, it produces a medium to high strength working alloy. As a hardener, magnesium is better than manganese, with 0.8%Mg equivalent to 1.25%Mn (Davis, 2001). Al-Mg alloy has good corrosion resistance; this alloy has long been called hydronalium and is known as an alloy that is resistant to corrosion (Surdia & Saito, 1999). To increase the strength of the alloy against stress corrosion, Mn and Cr elements are added (Irawan, 2015).

Alloys with a content of 2-3% Mg have the character of being easy to forge, roll, and extract. Aluminum alloy 5005 is an alloy that has a low Mg content and is often used as an accessory. Aluminum alloy 5052 is an alloy that is often used as a forging or construction material. Aluminum alloy 5056 is the strongest alloy where it is used after being hardened by strain hardening if high hardness is required. The annealed alloy 5083 is an alloy of 4.5% Mg, which is strong and easy to weld; therefore, it is used in liquefied natural gas (LNG) tanks (Irawan, 2015; Surdia & Saito, 1999).

6.2.2.5 Al-Mg-Si Alloy

Aluminum is a non-ferrous metal that is widely used in the industry. It is a light metal with a density of 2.7g/cm³ and a melting point of 600°C. Aluminum has good corrosion resistance and is also a good conductor of heat and electricity. There is an oxide layer (Al₂O₂) on the aluminum surface, which serves to protect it from

۲

corrosion. This layer is hard and has a high melting point of about 2050°C. Because the melting point is much higher than that of the parent metal, the coating becomes a serious problem in the aluminum welding process, making it difficult to mix the base metal and filler metal and thus causing incomplete melting and resulting in defects in the form of fine holes in the weld (Ogunsemi et al., 2021). To remove the oxide layer (Al₂O₃), the surface to be welded must first be brushed with a steel brush. The use of noble gases during welding will prevent the oxide layer from forming again and prevent unwanted deposits from forming during the welding process.

•

Aluminum has light properties, good electrical, good resistance to corrosion, and heat conductivity, and is easy to form both through forming and machining processes. In nature, aluminum is a kind of oxide that is stable; thus, reduction method cannot be applied to aluminum that is usually applied in other metals. The reduction of aluminum only can be made by applying electrolysis method. In order to improve its mechanical strength, several elements can be added, such as Mg, Cu, Si, Zn, Mn, Ni, and so on, together or individually, and also to improve other good properties of aluminum, such as wear resistance, corrosion resistance, low coefficient of expansion, etc. Aluminum alloys can be divided into two groups, namely, sheet aluminum and cast aluminum. Aluminum (99.99%) has a specific gravity of 2.7 g/cm3; above the magnesium (1.7 g/cm³) and beryllium (1.85 g/cm³) or about 1/3 of the specific gravity of iron or copper, a density of 2.685 kg/cm³, and its melting point is 660°C. Aluminum has the higher strength to weight ratio compared to steel. Its electrical conductivity is 60% more than copper, so it is used for electrical equipment. In addition, aluminum is a good conductor of heat and has good reflecting properties. Therefore, it is also used in engine components, heat exchangers, reflecting mirrors, chemical industry components, etc. (Irawan, 2015). The corrosion-resistant properties of aluminum are obtained from forming an aluminum oxide layer on the aluminum surface. This oxide layer is firmly and tightly attached to the surface and is stable (does not react with the surrounding environment) to protect the inside. Aluminum and its alloys have unique properties that make aluminum one of the simplest, most economical, and often applied metallic materials for various applications and it ranks second only to steel in its use as a structural metal (Davis, 2001).

The 6xxx series aluminum alloys contain Mg and Si in the right ratios to form Mg₂Si when heat treated. Even though it is not as strong as the 2xxx and 7xxx series aluminum alloys, the 6xxx series aluminum alloys have good properties, such as weldability, formability, corrosion resistance and machinability (Andersen et al., 2018).

In addition to the above properties, 6xxx series aluminum alloy is also very good for formability for forging and extrusion and good for high formability at ordinary temperatures. After processing, these alloys can be strengthened by heat treatment (Surdia & Saito, 1999). Tables 6.3–6.5 present the chemical composition of Al6061.

6.3 PRECIPITATION HARDENING

Precipitation hardening, also known as particle hardening, is a technique in heat treatment. It is a metal alloy hardening process by spreading fine particles evenly (Ataiwi et al., 2021). The strength and hardness of the metal can be increased by the formation of very small uniformly distributed particles that occur in the second

۲

۲

Element	Value %	
Silicon (Si)	0.40-0.80	
Iron (Fe)	0.70	
Copper (Cu)	0.15-0.40	
Manganese (Mn)	0.15	
Magnesium (Mg)	0.80-1.20	
Chromium (Cr)	0.04-0.35	
Zinc (Zn)	0.25	
Titanium (Ti)	0.15	
Other (Each)	0.05	
Other (Total)	0.15	
Aluminum (Al)	Balance	

TABLE 6.4Properties of Al6061 by Heat Treatment

Alloy	Composition	Temper	Tensile Strength (MPa)	Yield Strength (MPa)	Elongation in 50 mm (%)
6061	1.0 Mg, 0.6 Si, 0.2 Cr	0	125	55	25
		T4	245	245	25
		T6	315	315	12
		T91	410	400	6
Source:	Surdia & Saito, 1999.				

TABLE 6.5

۲

Mechanical Properties of Al-Mg-Si Alloy

Alloy	Condition	Tensile Strength (kgf/mm²)	Creep Strength (kgf/mm ²)	Elongation (%)	Shear Strength (kgf/mm²)	Hardness (Brinell)
6061	0	12.6	5.6	30	8.4	30
	T4	24.6	14.8	28	16.9	65
	Т6	31.6	28.0	15	21.0	95
Source:	· Surdia & Sait	o, 1999.				

۲

stage of the original metric phase. Examples of alloys that are increased in hardness by precipitation hardening are aluminum-copper, copper-beryllium, copper-tin, and magnesium-aluminum. Some irons can also increase hardness through precipitation hardening (precipitation), but precipitation on iron is a different phenomenon, although the healing process is almost the same (Callister & Rethwisch, 2015).

 (\blacklozenge)

For precipitation of supersaturated solid solutions, the basic requirement of a precipitation-hardening alloy system is that the solubility limit of the solid should decrease with decreasing temperature. The hardening heat treatment procedure is first subjected to a dissolution heat treatment at a high temperature and then rapidly cooled in water or other cooling media (Bishop & Smallman, 1999).

Rapid cooling can inhibit the phase separation so that at low temperatures, the alloy is in an unstable supersaturated state, but after a rapid cooling process, if the alloy undergoes "aging" treatment for a long time, a second phase precipitates. This precipitation occurs through the process of nucleation and growth, fluctuations in the concentration of dissolved material form clusters of small atoms in the lattice, which become nucleates. As the size of the sediment becomes finer as the temperature at which precipitation is lowered, and the alloy undergoes a significant increase in hardness which is associated with a critical dispersion of the precipitate. If aging is allowed to continue at a certain temperature, there will be coarsening of the particles (small particles tend to dissolve again, and large particles get bigger). Coarser particles gradually replace numerous particles that are finely dispersed with large dispersion distances. In this state, the alloy becomes softer, and the metal is said to be in the form of late aging (ASM International Handbook, 2001).

Heat treatment improves various mechanical and alloying properties because both dissolved atoms and point defects above equilibrium concentrations are maintained during this process. The rapid cooling process often eliminates lattice strain. The property that undergoes the most change is the electrical resistance which is usually a very large increase. On the other hand, the mechanical properties are not significantly affected (Bishop & Smallman, 1999).

Changes in the properties of the quenched material after aging are more pronounced. In particular, the mechanical properties undergo major modifications. For example, the tensile strength of duralumin (an aluminum alloy -4% copper containing magnesium silicon and manganese) can be increased from 0.21 to 0.41 GN/m². Structural sensitive properties such as hardness, yield stress, and so on, of course, depend on the distribution of the phase structure; thus, such alloys experience softening when the finely dispersed precipitate hardens (Bishop & Smallman, 1999). The process of precipitation hardening or hardening can be divided into several stages (Callister & Rethwisch, 2015) as follows:

- 1. Solution heat treatment, which is heating the alloy above the solvus line.
- 2. Rapid cooling (quenching).
- 3. Precipitation heat treatment (aging), where the workpiece is heated to a temperature of T2, where the supersaturated solid solution begins to form the phase. This phase appears in the form of a fine precipitate which is dispersed and increases the strength of the metal. The heating duration depends on the formation stage of the optimum solidifying sediment.

۲

()

There are several types of precipitation heat treatment (Callister & Rethwisch, 2015), which are as follows:

a. Natural Aging

In the natural aging process, the alloy does not experience heating. Only left at room temperature, in this process, it takes a long time, and the strengthening effect given is not so great. The precipitates in the matrix are still random (Triantafyllidis et al., 2015).

b. Artificial Aging

Artificial aging is a process where the alloy is heated to a certain temperature. At this stage, the precipitates are evenly distributed and form groups; at this stage the optimum strengthening effect can be produced (Abo Zeid, 2019).

c. Over-Aging

()

Over-aging is the aging process which is carried out for too long, or where the temperature is too high; at this stage, the precipitate and matrix are in balance. Overaging can reduce the strength of the material that has been achieved previously (Liao et al., 2020).

6.3.1 NATURAL AGING

Natural aging is the aging for aluminum alloys which are treated with age hardening in a cold state. Natural aging occurs at room temperature between 15°C and 25°C and with a holding time of 5 to 8 days.

6.3.2 ARTIFICIAL AGING

Artificial aging is the aging for aluminum alloys that are treated with age hardening in a hot state. Artificial aging occurs at temperatures between 100°C and 200°C and with a holding time of 1 to 24 hours (Smith et al., 2015). After solution heat treatment and quenching, alloy hardening can be achieved in two ways: at room temperature (natural aging) or by precipitation heat treatment (artificial aging). Aging at room temperature will take a longer time, usually around 96 hours, to achieve a more stable strength, whereas if aging is done artificially, the aging time depends on the heating temperature. The higher the aging temperature, the shorter the time required to reach a certain strength (Cochard et al., 2017).

The use of the alloy hardening method depends on the type of alloy that one wants to increase the hardness. For alloys with a slow precipitation reaction, precipitation is always carried out at temperatures above the room temperature (artificial aging). In contrast, natural aging is sufficient for those with a fast precipitation reaction to obtain desired mechanical properties. In the aging process, the formation and growth of nuclei occur, leading to the formation of stable precipitates. The formation of this

 (\blacklozenge)

phase occurs through several phase transitions which also affect the mechanical properties of the alloy (Liao et al., 2020).

At the artificial aging stage in the age-hardening process, several variations of treatment can be carried out, which can affect the results of the age-hardening process. One of these variations is the artificial aging temperature variation. The artificial aging temperature can be set at the temperature at which the aluminum alloy crystallizes (150°C), below the crystallization temperature, or above the crystallization temperature of the aluminum alloy metal (Smith et al., 2015).

Taking the artificial aging temperature into consideration, a temperature between 100°C and 200°C will affect the level of hardness because there will be changes in the phase or structure of the artificial aging process. This phase change will contribute to the hardening of the aluminum alloy (Smith et al., 2015). The phase change in the artificial aging process is explained in Figure 6.2.

The explanation of the diagram in Figure 6.2 is as follows.

a. Supersaturated Solid Solution a

After the aluminum alloy passes through the solution heat treatment and quenching stages, a supersaturated solid solution will be obtained at room temperature. Under these conditions simultaneously, the atomic vacancies in thermal equilibrium at high temperatures remain in place. After cooling or quenching, the aluminum alloy becomes soft compared to its initial condition (Singh et al., 2018).

b. Zone (GP 1)

(�)

Zone (GP 1) is a precipitation zone formed by low aging or aging temperatures and is formed by the segregation of Mg-Si atoms in a supersaturated solid solution. Zone (GP 1) will appear in the early stage(s) of the artificial aging process. This zone is formed when the artificial aging temperature is below 100°C, and the Zone (GP 1) will not be formed at too high an artificial aging temperature. The formation of

()

 (\blacklozenge)

the Zone (GP 1) will begin to increase the hardness of the aluminum alloy (Smith et al., 2015).

If artificial aging is set at a temperature of 100°C, then the phase change stage is only until the formation of Zone (GP 1). The process of hardening from a supersaturated solid solution to forming a Zone (GP 1) is commonly referred to as first stage hardening (Yang et al., 2016).

c. Zone (GP 2) or β " Phase

After the artificial aging temperature passes 100°C and above, the β " or Zone (GP 2) phase will begin to appear. At a temperature of 130°C, a zone (GP 2) will be formed, and if the artificial aging holding time is fulfilled, the optimal hardness level will be obtained (Andersen et al., 2018).

Usually, the artificial aging process stops when a zone (GP 2) is formed. A fine intermediate phase is formed (β " precipitation) because after passing through the Zone (GP 2), the alloy will become soft again. If the artificial aging process continues until the β " or Zone (GP 2) phase is formed, it is called the second stage of hardening.

d. β' Phase

Suppose the aging temperature of the aluminum alloy is increased or the aging time is extended but the temperature remains constant. In that case, it will form precipitation with a stable crystal structure different from the phase. This phase is called the intermediate phase or β ' phase. The formation of this β ' phase can still contribute to an increase in the hardness of aluminum alloys. The increase in hardness that occurs in the β ' phase is very slow (Chen et al., 2021).

e. β Phase

(�)

The holding time in artificial aging is one component that can affect the results of the overall age-hardening process. As with temperature, the holding time in the artificial aging stage will affect changes in the structure or phase of the aluminum alloys. If the temperature increases or the aging time is extended, then the β ' phase changes to the β phase. If the phase is formed, it will cause the aluminum alloy to become soft again. Meanwhile, artificial aging holding time must be selected carefully (Rymer et al., 2021).

The relationship between aging time and aluminum alloy hardness begins with a phase change process that is formed in the precipitation hardening process, where the phase starts from a supersaturated solid solution after the quenching process. Then the alloy will experience aging or the appearance of new precipitates with time.

Several previous studies have developed the artificial aging method to improve the mechanical properties of aluminum alloy. Aluminum alloy AA7049 has experienced an increase in tensile strength due to multistage heat treatment (there are two times of heating). Multistage heat treatment, called the retrogression and re-aging process in this study, has been shown to increase the tensile strength of aluminum alloy AA7049 as evidenced by changes in the microstructure, where the sediment grows and fills

()

grain boundaries (Ranganatha et al., 2013). Furthermore, previous study about the multistage-aging process on Al-Zn-Mg-Cu alloys with two heating showed a change in the microstructure, which means that the treatment influences the mechanical properties of the aluminum alloy (Mandal et al., 2020).

 (\blacklozenge)

In 2017, the artificial aging method was developed into a multistage artificial aging method, with variations in the number of stages of aging (there are single stage, double stage, and triple stage aging) which are carried out to improve the mechanical properties of Al-Cu alloy, which through this treatment produces tensile strength and hardness. In other words, this treatment makes the Al-Cu alloy more resilient and increases its hardness (Tsamroh et al., 2017).

6.4 MICROSTRUCTURE CHANGE

Metals are generally constructed from a large number of crystals (the grains are referred to as grains of sand on a beach) consisting of one or more phases. Generally small, ranging from 10 μ m to 1 μ m, but there are also grains with sizes ranging from nm to cm; this microscopic metal arrangement is called a microstructure and can only be observed using a microscope. The microstructure of the grain size affects the strength of the material based on the grain size. Grain size cannot be used to control the strength of aluminum or its alloys, but it reduces the risk of hot cracking (Chen et al., 2021; García-rentería et al., 2020).

This study combines natural aging and artificial aging treatments intending to know how the microstructure changes Al6061 in natural aging treatment only with specimens receiving artificial aging treatment. Figure 6.3 shows the heat treatment diagram.

The research method used in this study is a laboratory experimental method which is intended to obtain descriptive data about changes in the microstructure of aluminum 6061 with natural aging, and natural aging treatments followed by artificial aging. Natural aging was conducted at room temperature for 7 days after the solution

۲

FIGURE 6.3 Heat treatment diagram.

93

(�)

heat treatment process at a temperature of 540°C and cooled rapidly using the mixture of water and dromus oil with a ratio of 1:1. The dependent variable of this study was microstructure change, while the independent variable of this study was the duration of holding time during the artificial aging process (2, 4, and 6 hours) with a temperature of 200°C. Figures 6.4–6.8 are the results of microstructure testing on Al6061 after getting natural–artificial aging treatment using an optical microscope. The microstructure of Al6061 was taken with a magnification of 200×. Changes in the microstructure of the material due to heat treatment can simply be seen in the grain size formed.

Precipitation that is spread evenly can increase the hardness and tensile strength of the material but causes the material to have brittle properties (Polmear, 2004). Based on the observation in Figure 6.4 it can be said that raw material of Al6061 has heterogeneous grain size and few residues on the surface of the specimen. Figure 6.5 is an image of the microstructure of Al6061 with natural aging treatment; it can be seen that the grain size is smaller than that of the raw material specimen (Figure 6.4). Figure 6.5 also shows the presence of residues formed on the surface of the specimen but not evenly distributed.

Figure 6.6 is a specimen of Al6061 with natural aging treatment followed by artificial aging treatment for 2 hours. From the figure, it can be seen that the grain size is more homogeneous, and the precipitates marked with black spots are seen more

FIGURE 6.4 Microstructure of Al6061 without treatment (raw material).

9781032341323c05-c10_p63-186.indd 94

(�)

•

FIGURE 6.5 Microstructure of Al6061 with natural aging treatment.

FIGURE 6.6 Microstructure of Al6061 with natural aging followed by artificial aging for 2 hours.

FIGURE 6.7 Microstructure of Al6061 with natural aging followed by artificial aging for 4 hours.

FIGURE 6.8 Microstructure of Al6061 with natural aging followed by artificial aging for 6 hours.

96

۲

Nanotechnologies in Green Chemistry and Environmental Sustainability

()

evenly on the surface of the specimen, both on the grainline and within the grain. Figure 6.7 is a specimen of Al6061 with natural aging treatment followed by an artificial aging process for 4 hours. The grain size of the specimen looks more homogeneous than the previous specimen, and the distribution of precipitates on the surface of the specimen also looks more even.

 (\blacklozenge)

The last specimen shown in Figure 6.8 is a specimen with natural aging followed by artificial aging for 6 hours. In this specimen, it can be seen that the grain size has increased again; this is probably due to the material experiencing over-aging due to a longer holding time. The precipitate formed on Al6061 which is an Al-Mg-Si alloy is Mg_2Si ; usually the precipitate formed is in the form of rods, needles, and laths (Andersen et al., 2018). The precipitation hardening process in Al-Mg-Si alloys can be identified in five stages:

Supersaturated Solid Solution $\alpha \rightarrow GP$ Zone $1 \rightarrow \beta^{"} \rightarrow \beta^{} \rightarrow \beta = Mg_{2}Si$

The hardening of the precipitate should be coherent or semi-coherent, usually the aluminum matrix has coherent or semi-coherent precipitates (S. Coriell, 2000). Coherent precipitates have a small mismatch lattice with the metal matrix, and there is a tight interfacial tension lattice. A small coherence value will affect the hardness of the metal; the smaller the coherence value, the higher the hardness of the metal will be, and the phase formed is called the β ' phase, whereas if the coherence value is not there at all, the hardness of the metal will decrease (this is called the β phase). The change from phase β ' to phase β ' occurs when the highest hardness number increases (Marioara et al., 2002).

This research proves that by applying artificial aging after natural aging, the β' phase can be identified which gives the material strengthening properties. It is proven by the amount of precipitate formed, which increases with increasing time with a constant temperature. In the artificial aging process, the β' phase is formed from the transition of GP zone 2 (β'') to the β' phase, which leads to coherent precipitates against the Al-Mg-Si alloy matrix. The first aging peak, the transition from GP zone 2 (β'') to the β' phase, increases significantly so that the hardness of the material in the β' phase increases. If the aging temperature or the aging time is extended but with a constant temperature, precipitation with a different crystal structure from the phase will be formed (Jin et al., 2018).

Changes in the microstructure of Al6061 in this study with natural aging and natural aging treatments followed by artificial aging were quite significant, and this can be seen from changes in grain size and the formation and distribution of precipitates (Mg₂Si). Based on Figure 6.5–Figure 6.8, the precipitate (Mg₂Si) which is the β ' phase formed during the heat treatment process is shown in black spots that spread on the surface of the specimen. The precipitates formed are rods.

Based on the theory, the hardness number of a material will increase if the grain size gets smaller (Hajihashemi et al., 2016). To prove this, hardness testing was carried out on all Al6061 specimens (raw material, natural aging, and natural aging followed by artificial aging). Hardness testing was carried out using a Rockwell Hardness Tester machine, with a major load of 100 kg, and a 1/8" steel ball indenter. The test was carried out on the E scale. Based on observations of the results of the microstructure

۲

TABLE 6.6 Hardness Number of Al6061				
Specimen	Holding Time (Hour)	Hardness (HR _E)		
Raw material	-	98		
Natural aging	-	84,6		
	2	93,4		
Artificial aging	4	106,8		
	6	105,8		

test, it can be seen that the specimens with relatively small and homogeneous grain sizes are those with natural aging treatment followed by artificial aging for 4 hours. Table 6.6 presents the result of hardness testing on Al6061.

From Table 6.6, it can be observed that specimens achieved the highest hardness number with natural aging treatment, followed by artificial aging treatment with a holding time of 4 hours with a figure of 106.8 HRE. Specimens that only received natural aging treatment had the lowest hardness number, which was 84.6 HRE. While the specimens underwent natural aging treatment followed by artificial aging with a holding time of 6 hours, the hardness number slightly decreased compared to specimens with a holding time of 4 hours, which was 105.8 HRE.

When compared with the hardness number of the raw material, it can be seen that the treatment with natural aging followed by artificial aging for 4 and 6 hours showed an increase in the hardness number. Thus, it can be estimated that the most optimum treatment to increase the hardness of Al6061 is natural aging followed by artificial aging with a holding time of 4–6 hours. However, specimens that only underwent natural aging treatment had the lowest hardness numbers. Thus, it can be concluded that the natural aging treatment has no significant effect on increasing the hardness of Al6061. The results of this study are almost the same as that of studies carried out by previous researchers, where natural aging did not affect the trend of increasing specimen hardness (Wardani et al., 2022). The holding time during artificial aging certainly affects the transformation/change of the microstructure of a material, which is also related to the hardness of the material (Rymer et al., 2021).

6.5 CONCLUSION

According to the discussion presented in this chapter, the following conclusions could be drawn:

- The microstructure change on Al6061 was obtained due to the heat treatment process. The microstructure change is mainly affected by the holding time during artificial aging.
- 2. The best result of this study was a specimen that had been aged artificially for 4 hours after the natural aging process, which had a smaller grain size that was likely homogeneous.

98

3. The change of microstructure affected the hardness of Al6061, with the highest hardness number of 106.8 HRE (specimen that aged artificially for 4 hours). The increasing hardness was thought to be caused by the formation of Mg₂Si precipitates.

•

ACKNOWLEDGMENT

The author would like to thank LPPM, the University of Merdeka Malang, which has provided the Internal Grant 2021.

REFERENCES

(🏠

- Abo Zeid, E. F. (2019). Mechanical and electrochemical characteristics of solutionized AA 6061, AA6013 and AA 5086 aluminum alloys. *Journal of Materials Research and Technology*, 8(2), 1870–1877. https://doi.org/10.1016/j.jmrt.2018.12.014
- Andersen, S. J., Marioara, C. D., Friis, J., Wenner, S., & Holmestad, R. (2018). Precipitates in aluminium alloys. *Advances in Physics: X*, 3(1), 790–814. https://doi.org/10.1080/23746 149.2018.1479984
- Andoko, A., Prasetya, Y. A., Puspitasari, P., & Ariestoni, T. B. (2020). The effects of artificialaging temperature on tensile strength, hardness, micro- structure, and fault morphology in AlSiMg. *Journal of Achievement in Materials and Manufacturing Engineering*. 98(2), 49–55. https://doi.org/10.5604/01.3001.0014.1480
- ASM International Handbook, V. 4. (2001). ASM handbook: heat treating. *Technology*, 4, 3470. https://doi.org/10.1016/S0026-0576(03)90166-8
- Ataiwi, A. H., Dawood, J. J., & Madhloom, M. A. (2021). Effect of precipitation hardening treatments on tensile properties, impact toughness, and microstructural changes of aluminum alloy AA6061. *Materials Today: Proceedings*. https://doi.org/10.1016/J. MATPR.2021.06.011
- Bishop, R. J., & Smallman, R. E. (1999). Modern Physic Metallurgy & Materials Engineering. Elsevier. 256.
- Callister, W., & Rethwisch, D. (2015). Materials science and engineering: an introduction. *Materials Science and Engineering*. https://doi.org/10.1016/0025-5416(87)90343-0
- Chacko, M., & Nayak, J. (2014). Aging behaviour of 6061 Al-15 vol% SiC composite in T4 and T6 treatments. *International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering*, 8(3), 195–198.
- Chen, C., Yin, X., Liao, W., Xiang, Y., Gao, M., & Zhang, Y. (2021). Microstructure and properties of 6061/2A12 dissimilar aluminum alloy weld by laser oscillation scanning. *Journal of Materials Research and Technology*, 14, 2789–2798. https://doi.org/10.1016/ j.jmrt.2021.08.105
- Cochard, A., Zhu, K., Joulié, S., Douin, J., Huez, J., Robbiola, L., Sciau, P., & Brunet, M. (2017). Natural aging on Al-Cu-Mg structural hardening alloys – investigation of two historical duralumins for aeronautics. *Materials Science and Engineering A*, 690, 259–269. https://doi.org/10.1016/j.msea.2017.03.003
- Coriell, S. (2000). Precipitation hardening of metal alloys. A Century of Excellence in Measurements, Standards, and Technology. CRC Press 14–15.
- Davis, J. R. (1993). Aluminum and Aluminum Alloys. ASM International.
- Davis, J. R. (2001). Aluminum and Aluminum Alloys. Light Metals and Alloys, 66. https://doi. org/10.1361/autb2001p351

99

()

- Flores, F. U., Seidman, D. N., Dunand, D. C., & Vo, N. Q. (2018). Development of high-strength and high-electrical-conductivity aluminum alloys for power transmission conductors. In: Martin, O. (eds) *Light Metals 2018*. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72284-9_34
- García-Rentería, M. A., Torres-Gonzalez, R., & Cruz-Hern, V. L. (2020). First assessment on the microstructure and mechanical properties of gtaw-gmaw hybrid welding of 6061t6 AA. *Journal of Manufacturing Processes*, 59(October), 658–667. https://doi.org/ 10.1016/j.jmapro.2020.09.069
- Hajihashemi, M., Shamanian, M., & Niroumand, B. (2016). Microstructure and mechanical properties of Al-6061-T6 alloy welded by a new hybrid FSW/SSW joining process. *Science and Technology of Welding and Joining*, 21(6), 493–503. https://doi.org/10.1080/ 13621718.2015.1138019
- Indonesia, K. P. R. (2018). *Kemenperin Kejar Produksi Aluminium Nasional 2 Juta Ton Tahun* 2025. Kementerian Perindustrian Republik Indonesia.
- Irawan, Y. S. (2015). Aluminium dan Paduannya Material Teknik (Aluminium dan Tembaga Paduan). Chapter 12. *Material teknik. seri*, 1–8.
- Jin, S., Ngai, T., Zhang, G., Zhai, T., Jia, S., & Li, L. (2018). Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy. *Materials Science and Engineering A*, 724, 53–59. https://doi.org/10.1016/ j.msea.2018.03.006
- Junkers, H. (2014). Duralumin and the Origins of Rivets. Duralumin and the Origins of Rivets Airstream
- Lee, Y. S., Koh, D. H., Kim, H. W., & Ahn, Y. S. (2018). Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment. *Scripta Materialia*, 147, 45–49. https:// doi.org/10.1016/j.scriptamat.2017.12.030
- Liao, X., Kong, X., Dong, P., & Chen, K. (2020). Effect of pre-aging, over-aging and re-aging on exfoliation corrosion and electrochemical corrosion behavior of Al-Zn-Mg-Cu alloys. *Journal of Materials Science and Chemical Engineering*, 8(2), 81–88. https://doi.org/ 10.4236/msce.2020.82008
- Mandal, P. K., John Felix Kumar, R., & Merrin Varkey, J. (2020). Effect of artificial ageing treatment and precipitation on mechanical properties and fracture mechanism of friction stir processed MgZn₂ and Al₃Sc phases in aluminium alloy. *Materials Today: Proceedings*. https://doi.org/10.1016/J.MATPR.2020.10.389
- Marioara, C. D., Andersen, S. J., Jansen, J., & Zandbergen, H. W. (2002). The GP-Zone to β Transformation in the Al-Mg-Si System. *Microsc. Microanal.*, 8(2), 1444–1445.
- Nulhaqem, L., & Abdul, B. I. N. (2013). Influence of Heat Treatment on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy. Bachelor Thesis. Universiti Malaysia Pahang. June. CD7752.pdf (ump.edu.my)
- Ogunsemi, B. T., Abioye, T. E., Ogedengbe, T. I., & Zuhailawati, H. (2021). A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments. *Journal of Materials Research and Technology*, 11, 1061–1089. https://doi.org/10.1016/ j.jmrt.2021.01.070
- Polmear, I. (2004). Aluminium alloys a century of age hardening. *Materials Forum*, 28, 1–14. https://doi.org/7F6104775CD4BCE9E9D087602166B700
- Prudhomme, M., Billy, F., Alexis, J., Benoit, G., Hamon, F., Larignon, C., Odemer, G., Blanc, C., & Hénaff, G. (2018). Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy. *International Journal of Fatigue*, 107(October 2017), 60–71. https://doi.org/10.1016/j.ijfatigue.2017.10.015

- Puspitasari, P., Puspitasari, D., Sasongko, M. I. N., Andoko, & Suryanto, H. (2016). Tensile strength differences and type of fracture in artificial aging process of duralium against cooling media variation. AIP Conference Proceedings, 1778, 0–4. https://doi.org/ 10.1063/1.4965746
- Rajasekaran, S., Udayashankar, N. K., & Nayak, J. (2012). *T4 and T6 Treatment of 6061 Al-15 Vol. % SiC P Composite*. International Scholarly Research Network. 2012. Article ID 374719. 1–5 https://doi.org/10.5402/2012/374719
- Rambabu, P., Prasad, N. E., & Kutumbarao, V. V. (2017). Aerospace Materials and Material Technologies. Springer. https://doi.org/10.1007/978-981-10-2143-5
- Ranganatha, R., Anil Kumar, V., Nandi, V. S., Bhat, R. R., & Muralidhara, B. K. (2013). Multi-stage heat treatment of aluminum alloy AA7049. *Transactions of Nonferrous Metals Society of China (English Edition)*, 23(6), 1570–1575. https://doi.org/10.1016/S1003-6326(13)62632-1
- Rymer, L. M., Winter, L., Hockauf, K., & Lampke, T. (2021). Artificial aging time influencing the crack propagation behavior of the aluminum alloy 6060 processed by equal channel angular pressing. *Materials Science and Engineering: A*, 811, 141039. https://doi.org/ 10.1016/J.MSEA.2021.141039
- Singh, R., Sachan, D., Verma, R., Goel, S., Jayaganthan, R., & Kumar, A. (2018). Mechanical behavior of 304 Austenitic stainless steel processed by cryogenic rolling. *Materials Today: Proceedings*, 5(9), 16880–16886. https://doi.org/10.1016/j.matpr.2018.04.090
- Smith, W. F., Javad, H., & Prakash, R. (2015). Introduction to Materials Science and Engineering. McGraw-Hill Education
- Surdia, T., & Saito, S. (1999). Pengetahuan Bahan Teknik. Pradnya Paramita. 372.
- Triantafyllidis, G. K., Pukhalska, N. V., & Zagkliveris, D. I. (2015). Natural aging effects on the solutionizing heat treatment process of the A6060 Al alloy as-cast billets for profile production. *Materials Sciences and Applications*, 6(2). *February*, 111–116.
- Tsamroh, D. I. (2021). Comparison finite element analysis on duralium strength against multistage artificial aging process. *Archives of Materials Science and Engineering*, 109(1), 29–34. https://doi.org/10.5604/01.3001.0015.0512
- Tsamroh, D. I., Puspitasari, P., Andoko, A., Permanasari, A. A., & Setyawan, P. E. (2018). Optimization of multistage artificial aging parameters on Al-Cu alloy mechanical properties. *Journal of Achievements in Materials and Manufacturing Engineering*, 87(2), 62–67. https://doi.org/10.5604/01.3001.0012.2828
- Tsamroh, D. I., Puspitasari, P., Andoko, Sasongko, M. I. N., & Yazirin, C. (2017). Comparison study on mechanical properties single step and three step artificial aging on duralium. AIP Conference Proceedings, 1887. https://doi.org/10.1063/1.5003553
- Wardani, I. P., Setyowati, V. A., Suheni, I., Saputro, B., Teknik, J., Institut, M., Adhi, T., & Surabaya, T. (2022). Pengaruh natural aging Sebelum Proses artificial aging Terhadap Sifat Mekanik Aluminium 6061. Seminar Nasional Sains Dan Teknologi Terapan VIII, 2020, 109–114.
- Woodford, C. (2021). Aluminum. www.explainthatstuff.com/aluminum.html.
- Yang, R. Xian, Liu, Z. Yi, Ying, P. You, Li, J. Lin, Lin, L. Hua, & Zeng, S. Min. (2016). Multistage-aging process effect on formation of GP zones and mechanical properties in Al-Zn-Mg-Cu alloy. *Transactions of Nonferrous Metals Society of China (English Edition)*, 26(5), 1183–1190. https://doi.org/10.1016/S1003-6326(16)64221-8

()

