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 Inflation is the tendency of increasing prices of goods in general and happens 

continuously. Indonesia's economy will decline if inflation is not controlled 

properly. To control the inflation rate required an inflation rate forecasting in 

Indonesia. The forecasting result will be used as information to the 

government in order to keep the inflation rate stable. This study proposes 

Fuzzy Neural System (FNS) to forecast the inflation rate. This study uses 

historical data and external factors as the parameters. The external factor 

using in this study is very important, which inflation rate is not only affected 

by the historical data. External factor used are four external factors which 

each factor has two fuzzy set. While historical data is divided into three input 

variables with three fuzzy sets. The combination of three input variables and 

four external factors will generate too many rules. Generate of rules with too 

many amounts will less effective and have lower accuracy. The novelty is 

needed to minimalize the amount of rules by using two steps fuzzy. To 

evaluate the forecasting results, Root Means Square Error (RMSE) technique 

is used. Fuzzy Inference System Sugeno used as the comparison method. The 

study results show that FNS has a better performance than the comparison 

method with RMSE that is 1.81. 
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1. INTRODUCTION 

Economic growth can be used to assess the development of a country. Economic growth means the 

physical development of goods and services production existing in a country [1]. On the other hand, inflation 

is the tendency of increasing prices of goods in general and happens constantly [2]. Therefore, it may 

influence the national economic growth. In other words, inflation could be used as a tool to measure the 

economic development of a country.  

Inflation can occur due to the high consumptive patterns of society. For example, the high 

employment opportunities creates a high level of income and further raises expenditures that exceed the 

economic ability of exceeding goods and services. So that the consumptive patterns of society will increase. 

Moreover, inflation can also occur due to increased prices of imports from their regions. The lower the 

degree of imported goods competition to domestic products, the greater the impact happens to the changes in 

the price of imported goods to the inflation. Inflation is often encountered by developing countries, such as 

Indonesia. Indonesia's economy will decline if inflation is not controlled properly. One of the problems 

caused by inflation is continuous currency debasement. Indirectly, the debasement may affect to the global 

trading activities. As a result, it may increase the cost of daily necessities and raise the spread of 

unemployment quantity. 
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Forecasting system is required to control the inflation rate required. It aims to provide information to 

the government for anticipating the future inflation. On the other hand, the forecasting results can be utilized 

by the community at large. For investors, the forecasting results can be used as investment information. The 

high inflation rate means that the investor could increase the investments on property is possibly more 

profitable. Forecasting is made based on historical data with time-series analysis technique, of the previous 

months the inflation occurs. This study will also use some external factors to determine the level of inflation. 

Historical data and external factors are used as an input variable, while the output data is the forecasting 

results. External factors used in this study include the Consumer Price Index (CPI), the BI Rate, Money 

supply, and Exchange rate. The external factors have been used in several studies [3-8]. 

Inflation rate forecasting has been done by Moser, et al [9] and [10]. Moser, et al used Auto 

Regression Integrated Moving Average (ARIMA) to forecast the inflation rate. Then Baciu used stochastic 

model to forecast the inflation rate [10].  

Recent study has used Backpropagation Neural Network (NN) as a method to forecast the inflation 

rate. Sari, et al used historical data and CPI as input variables. Accuracy obtained using method 

Backpropagation NN method is 0.204 [2]. The accuracy technique used is the Root Mean Square Error 

(RMSE). Neural Network has the advantage that is more flexible in terms of adapting and has a good ability 

to learn. Neural Network is able to detect patterns and trends in various data sets [12], but Neural Network is 

weak in explaining something. Therefore, it needs to be combined with fuzzy logic that has a good ability in 

explaining. This study is an advanced study from the previous study [2]. This study proposes Fuzzy Neural 

System (FNS) as a method that is capable to produce a better accuracy as compared to the previous study [2]. 

 

 

2. CURRENT STUDY 

Zhang and Li [13] used the SVR model to forecast inflation rate in China. SVR is a method used in 

making decisions. This method can be considered as the improvement of Linear Regression, where this 

method is able to generate a function with wavy results follow the data path formed. Therefore, the 

forecasting result becomes more accurate as compared to linear regression. The accuracy of the system using 

the RMSE is 0.1. 

In the previous study, Sari [2] used Backpropagation Neural Network to forecast the inflation rate. 

The study used historical data and CPI as input variable. The RMSE of the system obtained by using 

Backpropagation Neural Network is 0.204. In addition to forecast inflation rate, Neural Network is also used 

for forecasting the rising demand for electric vehicles applicable to Indian Road Conditions [14]. Based on 

their study, Poorani and Murugan  [15] said that Neural Network is particularly effective in handling outliers. 

Neural Network has a good ability to learn, but this model has a weakness in explaining things. Therefore a 

Fuzzy Neural System (FNS) as the inflation rate forecasting method to improve the forecasting accuracy. 

In terms of a forecasting, fuzzy logic has been successfully implemented in the forecasting problems 

using time-series data [16]. Fuzzy Neural System (FNS) has been used by [17] for modeling the nonlinear 

system. While Wibawa et al [12] used a combination of fuzzy logic and neural network to forecast the 

foreign exchange. This level of accuracy generated by using Mean Square Error (MSE) technique is 0.201. 

 

 

3. THE DATA SET 

This study uses the dataset in the form of historical data from Bank Indonesia [18] and the Badan 

Pusat Statistik [19]. The data record that used is 99 data ranging from October 2005 – Desember 2013.  

Parameters used in this study are historical data with time-series analysis (b-1, b-2, b-3). b-1 

parameter represents a month before, b-2 represents two months before, and b-3 represents three months 

before. This study also use several external factors which affect to the inflation rate, like CPI, BI rate, Money 

Supply, and Exchange Rate. Those parameters used as input variable in inflation rate forecasting. Whereas 

output variable is in the form of the inflation rate forecasting result in Indonesia. Table 1 and Table 2 are 

showing the data record to each variable. 
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Table 1. Internal Variable Based on Time Series Analysis 
Date Actual data b-1 b-2 b-3 

Dec-13 8.38 8.37 8.32 8.40 

Nov-13 8.37 8.32 8.40 8.79 
Oct-13 8.32 8.40 8.79 8.61 

Sep-13 8.40 8.79 8.61 5.90 

Aug-13 8.79 8.61 5.90 5.47 
Jul-13 8.61 5.90 5.47 5.57 

Jun-13 5.90 5.47 5.57 5.90 

May-13 5.47 5.57 5.90 5.31 
Apr-13 5.57 5.90 5.31 4.57 

Mar-13 5.90 5.31 4.57 4.30 

Feb-13 5.31 4.57 4.30 4.32 
Jan-13 4.57 4.30 4.32 4.61 

… … … … … 

Oct-05 17.89 9.06 8.33 7.84 

 

 

Table 2. External Variabes 
Date Actual data CPI Money supply BI Rate Exchange rate 

Dec-13 8.38 146.84 870455.00 7.50 11977.00 

Nov-13 8.37 146.04 856146.00 7.25 11234.00 
Oct-13 8.32 145.87 867721.00 7.25 11613.00 

Sep-13 8.40 145.74 855783.00 7.00 10924.00 

Aug-13 8.79 146.25 879986.00 6.50 10278.00 
Jul-13 8.61 144.63 858557.00 6.50 9929.00 

Jun-13 5.90 140.03 822930.00 6.00 9802.00 

May-13 5.47 138.60 832273.00 5.75 9722.00 
Apr-13 5.57 138.64 810112.00 5.75 9719.00 

Mar-13 5.90 138.78 786606.00 5.75 9667.00 

Feb-13 5.31 137.91 787916.00 5.75 9698.00 
Jan-13 4.57 136.88 841722.00 5.75 9651.50 

… … … … … … 

Oct-05 17.89 135.15 273954.00 11.00 10310.00 

 

 

4. TWO STAGES FUZZY LOGIC FOR INFLATION RATE FORECASTING 

Fuzzy logic used as comparison method as well as part of Fuzzy Neural System (FNS) method. The 

output generated by fuzzy logic will be used as input to the Neural Network. Fuzzy Inference System (FIS) 

Sugeno is a model from fuzzy logic used to forecast the inflation rate in Indonesia. FIS Sugeno developed by 

Takaghi, Sugeno, and Kang (TSK) [20]. This Fuzzy Inference System chosen because this model is suitable 

for time-series data such as in the study [16]. FIS Sugeno consists of three processes, including the 

fuzzification process, fuzzy inference engine, and defuzzification. 

 

4.1. Fuzzification 

Input variables in this study will be divided into two or more fuzzy sets. Fuzzy set is a union 

representing certain circumstances in a fuzzy variable [21]. Linguistic variables are united with fuzzy set, 

each of which has a membership function that has been defined [22]. Membership function is a curve 

showing the representation of the input point data into membership values that has interval between 0-1. 

Function to determine the membership value is described by Triangular fuzzy number [23]. Figure 1 shows 

an example of a Triangular fuzzy number representing input variables b-1, b-2 and b-3 [24]. Figure 2 

represents the external variables. 
 

 

 
 

Figure 1. An example of variable input time-series 
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Figure 2. An example of variable input external factors 
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4.2. Fuzzy Inference Engine 

The results of the calculation process of fuzzy membership valued then inferenced to the fuzzy 

rules. At the FIS Sugeno method, implication function used is Min. Table 3 is an example of fuzzy rules used 

in this study. The number of fuzzy rules obtained from the number of fuzzy set and then it power the number 

of input variables. For the example, there are three input variables and two fuzzy sets. So that the number of 

fuzzy rules obtained is eight fuzzy rules. In this study, each of fuzzy logic has a number of different rules. 

The first fuzzy logic (positive parameters) has 5 input variables with 2 fuzzy set and 3 fuzzy set. Therefore, 

the number fuzzy rules are 36. While, the second fuzzy logic (negative parameters) has 2 input variables with 

2 fuzzy set. Then, there are 4 rules in negative parameters. The positive and negative parameters describe in 

Figure 3 and Figure 4 below. This classification of parameters aims to minimize fuzzy rules. If not classified, 

there are 144 rules. Generating too many rules not effective and need more time. 
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Table 3. An Example of Fuzzy Rules 
No Fuzzy Rules 

R1 IF (b-1) is UP AND (b-2) is UP AND (b-3) is UP… THEN z = a+b1*(b-1)+b2*(b-2)+ … 

R2 IF (b-1) is DOWN AND (b-2) is UP AND (b-3) is DOWN … THEN z = a+b1*(b-1)+b2*(b-2)+ … 
R3 IF (b-1) is UP AND (b-2) is DOWN AND (b-3) is UP … THEN z = a+b1*(b-1)+b2*(b-2)+ … 

R4 IF (b-1) is UP AND (b-2) is UP AND (b-3) is DOWN … THEN z = a+b1*(b-1)+b2*(b-2)+ … 

R5 IF (b-1) is CONSTANT AND (b-2) is DOWN AND (b-3) is UP … THEN z = a+b1*(b-1)+b2*(b-2)+ … 

 

 

4.3 Defuzzification 

The output value (crisp) obtained by changing the input into a number in the fuzzy set or that 

referred to defuzzification. Defuzzification method in the Sugeno method is Center Average Defuzzyfier. 

To decrease the amount of fuzzy rules that are so many, this study uses two stages fuzzy technique, 

that is grouped the parameters which have the positive and negative influence to the inflation rate. It is said 

positive parameter if the parameter can control the price level [24]. Money Supply and CPI are often used by 

Indonesian government to control the price level. They are can be categorized as positive parameters. Besides 

that, historical data also can be categorized into the positive parameter. The rest can be categorized into the 

negative parameter showed in Table 4. Figure 3 and Figure 4 describe the two stages of fuzzy structure. 

 

 

Table 4. An Positive and Negative Parameters as Input Variables 
Parameters 

Positive Negative 

b-1 Exchange rate 

b-2 BI rate 
b-3  

CPI  

Money Supply  

 

 

 

 

  

Figure 3. Fuzzy structure with positive parameter Figure 4. Fuzzy structure with negative 

parameter 

Based on the two stages fuzzy test results, each of these processes produce output that is in the form 

of inflation forecasting. The forecasting results are shown in Table 5. Data processing result using two stages 

fuzzy, it used as an input variables to be processed using Neural Network.  
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Table 5. The Inflation Rate Forecasting in Indonesia on Each Parameter 

Date Actual data 

Forecasting result 

FIS Sugeno I FIS Sugeno II 

Parameter + Parameter - 

13-Dec 8.38 8.85048 12.4735 

13-Nov 8.37 8.773 11.31075 
13-Oct 8.32 8.75544 11.68975 

13-Sep 8.4 9.18091 10.581 

13-Aug 8.79 9.68373 9.0955 
13-Jul 8.61 6.692 8.7465 

13-Jun 5.9 6.13282 7.78 

13-May 5.47 6.13014 7.28025 
13-Apr 5.57 6.64419 7.27725 

13-Mar 5.9 6.16127 7.22525 

13-Feb 5.31 5.37959 7.25625 

13-Jan 4.57 5.06216 7.20975 

… … … … 

5-Oct 17.89 17.13 18.56175 

 

 

5. THE PROPOSED METHOD  

In Section 5, the study proposes Fuzzy Neural System (FNS) as inflation forecasting method. FNS is 

a hybrid method between FIS Sugeno and Backpropagation Neural Network. Figure 5 illustrates the structure 

of Backpropagation Neural Network [26]. 

 

 

 
 

Figure 5. The Backpropagation Neural Network’s structure. 

(Adapted by Saif et al, 2013) 

 

 

Having obtained the fuzzy output in Section 4, the next stage is the training data process. The 

training data process in Neural Network is a learning data process. The data that will be used in the training 

data process data are 70 data records (April 2008 - December 2013) taken from each input variable. Input 

variable in this stage is in the form of output predictions generated by the FIS Sugeno process in Section 4. In 

the proposed method used 3 neuron hidden layers, namely Z1, Z2, and Z3. The number of hidden layer is 

determined to minimize the computational process. However, use some of hidden layer will minimize error 

value. 

 

 

6. NUMERICAL EXAMPLE 

Backpropagation Neural Network has two stages working mechanism, namely feedforward and 

backpropagation. In the feedforward stage, it is conducted the training data process that is the learning data 

process. The training data process also involves the learning rate testing process. Learning rate testing is 

carried out together with training data process. The test results can be used for testing the data at the further 

stage that is testing the number of epoch. In this stage it is used 69 data records (April 2008 – December 

2013) to training data process. The results of learning rate testing shown in Table 6. 
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Table 6. The Learning Rate Testing Result on Each Experiment 
Learning 

Epoch 
Experiment 

rate 1 2 3 … 10 Error 

  
RMSE average 

0.1 2000 0.002758 0.002756 0.002754 … 0.002743 0.001101 
0.2 2000 0.002644 0.002666 0.002667 … 0.002669 0.001065 

0.3 2000 0.002628 0.002652 0.002618 … 0.002639 0.001054 

0.4 2000 0.002626 0.00261 0.002619 … 0.002619 0.001047 
0.5 2000 0.00263 0.002625 0.002635 … 0.002678 0.001057 

0.6 2000 0.002675 0.002617 0.002653 … 0.002642 0.001059 

0.7 2000 0.00263 0.00265 0.002597 … 0.002654 0.001053 
0.8 2000 0.002642 0.002668 0.002653 … 0.002669 0.001063 

0.9 2000 0.002676 0.002681 0.002682 … 0.002673 0.001071 

1 2000 0.002646 0.002687 0.002695 … 0.002687 0.001071 

 

 

 
 

Figure 6. Learning rate testing graph 

 

 

In Figure 6 known that the learning rate movement chart look down and suddenly up. Basically, the 

smaller the value of learning rate then the learning process will be longer to reach the target. In addition, the 

target may not be achieved due to the condition of the epoch stopped before reaching the target so that the 

error generated is still high. However, the large value of learning rate will make the learning process faster.  

The faster of the learning process will allow the target to be exceeded. Therefore, the resulting error tends in 

this analysis tends to be high. It can be concluded that the value of learning rate which is has small and large 

rates are difficult to achieve the target. It also influenced by the different data. In this test the best value for 

learning rate is 0.4. The values are selected based on the smallest error average is 0.001047 that shown in 

Table 6.  

After obtained the best learning rate value, that value is used to test the amount of epoch. Testing is 

performed 10 times. This test aims to get the best epoch that use to find the number of neurons in further 

testing. The test result is shown in Table 7. 

 

 

Table 7. The Number of Epoch Testing Result on Each Experiment 
Learning 

Epoch 
Experiments 

 
rate 1 2 3 … 10 Error 

  
RMSE average 

0.4 5000 0.002596 0.00254 0.002579 … 0.002577 0.002563 

0.4 10000 0.002444 0.002468 0.002448 … 0.002449 0.002488 
0.4 30000 0.002359 0.002364 0.002388 … 0.002395 0.002399 

0.4 50000 0.002315 0.002333 0.002348 … 0.002332 0.002338 

0.4 100000 0.00225 0.002224 0.002389 … 0.002228 0.002287 
0.4 150000 0.002182 0.002208 0.002193 … 0.00218 0.002189 

0.4 200000 0.002169 0.00249 0.00249 … 0.002164 0.002264 

0.4 250000 0.002153 0.002153 0.002154 … 0.002155 0.002153 
0.4 300000 0.002147 0.002149 0.002147 … 0.002149 0.002206 

0.4 320000 0.002145 0.002389 0.002147 … 0.002148 0.002193 
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Figure 7. The number of epoch testing 

 

 

Figure 7 shows the movement of the epoch seemed to decline. This is because the more epoch that 

used, then learning process will reaching the target fastly, so the resulting error is smaller. However, to get 

that result, it can take a lot of time in computing process. In this testing the best of epoch is 250000. The 

value are selected based on the the smallest of error average is 0.002153as shown in Table 7. 

Having obtained the best of learning value and the number of epoch, then further testing has done 

the testing of neuron. Some neural network structures are tested for evaluating the optimal network 

considering the number of neuron in the hidden layer [27]. The result of these tests are used in the next stages 

is data processing using Neural Network. The testing neuron performed 10 times. The result of neuron testing 

is shown in Table 8. 

 

 

Table 8. The Number of Neuron Testing Result on Each Experiment 

Neuron 
Learning 

Epoch 
Experiments Error 

Rate 1 2 3 … 10 average 

   
RMSE 

 
3 0.4 250000 0.002142 0.002153 0.002152 … 0.002389 0.002177 

4 0.4 250000 0.002113 0.002149 0.002119 … 0.002161 0.00213 
5 0.4 250000 0.002109 0.00212 0.002109 … 0.00212 0.002169 

6 0.4 250000 0.002097 0.002115 0.00211 … 0.002111 0.002112 

7 0.4 250000 0.002093 0.00211 0.002103 … 0.002109 0.00211 
8 0.4 250000 0.002099 0.002103 0.002137 … 0.002096 0.002125 

9 0.4 250000 0.002122 0.002111 0.002112 … 0.002094 0.002112 

10 0.4 250000 0.002103 0.002117 0.002114 … 0.002111 0.002114 

 

 

 
 

Figure 8. The number of neuron testing 

 

 

Figure 8 shows the movementof error average decreases as the number of neurons. This is because 

more and more neurons are used, the result of error is getting smaller. However, it can take a lot of time in 

the computing process. In this test the best neuron is 7. The value are selected based on the smallest of error 

average is 0.00211 as shown in Table 8.   

Based on the test result, the number of neurons obtained the best weights to be used for testing data. 

The weights are summarized in Table 9. Vij is weight from neuron input to neuron hidden. Then, Wjk is 

weight from neuron hidden to neuron output. 
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Table 9. The Weights Obtained During the Training Process 
Vij 1 2 3 4 5 6 7 

1 -0.801 1.11978 -1.7285 -1.0278 -15.993 -1.5049 -4.5577 

2 -0.1697 -0.2628 0.89545 0.091 19.6983 0.63894 6.66133 

 

 
Wjk 1 

1 -2.9618 

2 5.24921 

3 -3.3891 
4 -3.037 

5 -1.649 

6 -3.1919 
7 3.98781 

 

 

7. RESULT AND DISCUSSION 

In this stage, it is conducted the data testing to get the results of inflation forecasting in Indonesia. 

The data testing is done after obtaining the value of learning rate and the best weight on the training data 

process. The best value of learning rate in the training data process is 0.4 with computation time is 1 second.  

The next process is data testing. Data used in the testing stage are 30 data (October 2005 – March 

2008). This stage is Backpropagation mechanism to produce an inflation rate forecasting in Indonesia. To test 

the accuracy of the system, this study uses Root Mean Square Error (RMSE) technique. This technique is 

easy to implement and has been frequently used in variety of studies related to the forecasting, as in the study 

by Stock and Watson [28] and Sari, et al [29]. Table 10 shows the forecasting results using FNS. 

 

 

Table 10. The Forecasting Result betwen FNS and FIS Sugeno Method 
Bulan Actual data FIS Sugeno FNS 

Mar-08 8.17 4.74536 5.629177 
Feb-08 7.4 4.93495 5.688712 

Jan-08 7.36 4.20774 5.579564 

Dec-07 6.59 4.27898 5.566819 
Nov-07 6.71 4.71617 5.672624 

Oct-07 6.88 4.94409 5.724522 

Sep-07 6.95 4.71438 5.840431 
Aug-07 6.51 4.38733 5.644035 

Jul-07 6.06 4.04482 5.534054 

Jun-07 5.77 4.426 5.687975 
May-07 6.01 4.88781 6.077364 

Apr-07 6.29 5.42047 7.004558 

Mar-07 6.52 5.20755 7.180982 
Feb-07 6.3 5.43999 7.973428 

Jan-07 6.26 6.31525 8.345952 

… … … … 
5-Oct 17.89 18.03852 15.50373 

RMSE 3.54 1.81 

 
 

 
 

Figure 9. The results of the comparison method between FNS and FIS Sugeno for inflation rate forecasting 

 

 

This study is advanced study from previous study [30]. In the previous study used Fuzzy Inference 

System (FIS) Sugeno approach for inflation rate forecasting. Time series and external factors used in that 
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study [30]. Accuracy of forecasting result by using FIS Sugeno is 3.54. Previous study [30] used as a 

comparison method. Table 10 shows a comparison between the proposed method and the comparison 

method. In Figure 9 it is known that the FNS shows the movement that closer to the actual data. By using 

RMSE technique, the accuracy of the system generated by FNS is 1.81. While the accuracy generated by the 

comparison method is 3.54. Based on Table 10 FNS method has a better performance and makes a better 

prediction than the comparison method. This result can occur because FNS model there is a process of 

training data neural network so that this method is more flexible in terms of adapting to the environment and 

have good learning ability. 

 

 

8. CONCLUSION  

Fuzzy Neural System (FNS) method that is proposed in this study can be implemented for the 

inflation rate forecasting in Indonesia. The result of RMSE calculation shows that FNS has a better 

performance than the comparison method FIS Sugeno (previous study)[30]. With the addition of some 

external parameters (external factor), the forecasting result using FNS method is also better than using 

Backpropagation Neural Network in previous study[11]. The accuracy of the system produced by FNS using 

RMSE analysis technique is 1.81. 

The accuracy of the system resulted in this study can still be improved. One of the things that affect 

the accuracy of the system is the formation of fuzzy rules and determining the initial weights in the Neural 

Network training process. In this study, the determination of fuzzy rules determined manually. While the 

initial weights in training process are still determined randomly. It might be that such a determination is less 

fit. Therefore, genetic algorithm implementation in the next study is needed to optimize the fuzzy rules and 

the initial weights in training data process. Optimization aims to improve the accuracy of the system that is 

better. Genetic Algorithm has been used to resolve issues related to the optimization like a study conducted 

by [31]. 

Provide a statement that what is expected, as stated in the "Introduction" chapter can ultimately 

result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can also be added the 

prospect of the development of research results and application prospects of further studies into the next 

(based on result and discussion). 
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