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A R T I C L E  I N F O   

Keywords: 
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A B S T R A C T   

Indonesia aspires to reduce 29%–41% of the nation's carbon emissions by 2030 and to reach net zero‑carbon 
emissions by 2060. The production paradigm of the Indonesian economy still relies entirely on dirty energy 
sources, including coal, oil and gas. As it is a natural resource-abundant developing country, we simulate the 
decomposed carbon emissions response to mounting economic growth and the Economic Complexity Index (ECI) 
for the next 20 years, applying a dynamic simulated autoregressive distributed lag approach using time series 
data from 1966 to 2018. Our investigation demonstrates that economic growth and increased ECI help to reduce 
carbon emissions–oil use intensity and vice versa. Conversely, gas and coal emissions intensities respond posi
tively to ECI, but negatively to economic growth. Our findings confirm that inadequate technological 
improvement in gas and coal use-oriented industries are detrimental to decoupling the economic 
growth–emissions relationship.   

1. Introduction 

Indonesia has enjoyed robust economic growth at the expense of 
significant environmental degradation. The economy is anticipated to 
become the fifth-largest in the world by 2030, with an expected GDP of 
USD 5.42 trillion (Pricewaterhouse Coopers, 2017). Simultaneously, the 
Indonesian government has committed to the United Nations Frame
work Convention on Climate Change to reduce 29%–41% of the nation's 
carbon emissions by 2030 and to achieve net zero‑carbon emissions by 
2060. A recent analysis argues that the country must invest approxi
mately USD 200 billion/year in mitigation programmes to meet its 
carbon emissions target over the next nine consecutive fiscal years 
(Reuters, 2021). Indonesia has adopted a few policy measures, including 
energy efficiency, promoting clean energy share, less carbon fuel 
switching and the adoption of green technology in the energy industry 
(Fragkos et al., 2021). To achieve the low-carbon energy targets of the 
Paris Agreement, electricity and transportation in Indonesia are two 
prioritised sectors in which to conduct the carbon intensity (CI) reduc
tion process. Regarding Indonesia's current reality and development, the 
projection of advancing the renewable energy mix in primary energy 

consumption and power generation may not corroborate the target of 
the General National Energy Plan (RUEN). The nation aspires to ensure 
the inclusion of a 23% proportion of renewable energy in the total en
ergy mix by 2050. The projection of fossil energy mix also mismatches 
the RUEN target, indicating that policymakers must review the plan for 
2015–2050 RUEN. In addition, Indonesia enjoys a significant volume of 
trade earnings, primarily through exporting natural resources and 
foreign remittance inflow. Given the nation's export-oriented economy, 
coupled with its labour abundance, we are motivated to investigate the 
dynamic impact of Indonesia's Economic Complexity Index (ECI) on 
various measures of CI, including oil, gas and coal. 

Indonesia may encounter some challenges in achieving carbon 
emissions targets for three primary reasons. First, the COVID-19 
pandemic led to a national economic recession, as around 1.8 million 
people lost their jobs and 2.8 million people fell below the poverty line. 
To tackle these circumstances, Indonesian fiscal policy might focus on 
economic recovery rather than green investment. Second, the nation's 
economic growth still relies on sectors that primarily use dirty energy; 
for instance, Indonesian foreign earnings depend heavily on coal 
extraction and exports, crude oil and palm oil. Third, Indonesia is 
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following the traditional economic growth paradigm, which could be 
counterproductive to achieving carbon emissions targets. Subsequently, 
the country must advance the adoption of a knowledge-based economy 
to enjoy robust economic growth while minimising negative 
externalities. 

Many developed countries have curbed carbon emissions through 
technological progress (Zhao et al., 2021; Sohag et al., 2019a, 2019b; 
Samargandi, 2017). The literature argues that economic structural 
change paving the way to a knowledge-based production process is 
imperative for promoting energy efficiency and ultimately reducing 
carbon emissions (Balsalobre-Lorente et al., 2021; Can and Gozgor, 
2017). To examine these effects, we simulate the impact of the ECI on 
emissions intensities in the context of Indonesia. Hidalgo and Hausmann 
(2009) propose the ECI for determining the intensity of technological 
knowledge use in producing a wide range of products targeting domestic 
and international consumers. Simoes and Hidalgo (2011) argues that the 
production process requires capabilities along with labour and capital. 
Research attributes these capabilities as non-saleable goods and ser
vices, including infrastructure development, intellectual property rights, 
policies and skilled labour (Hidalgo and Hausmann, 2009). Some recent 
articles conclude that the ECI is useful for explaining countries' carbon 
emissions function, e.g. Doğan et al. (2021) for developed countries; 
Neagu (2019) for European Union countries; Qayyum et al. (2021) for 
cross-countries; and Leitão et al. (2021) for the BRIC countries, Brazil, 
Russian, India and China. Accordingly, we argue that the ECI can reflect 
the degrees of knowledge, skilled labour and sophisticated production of 
Indonesia over time, with significant implications for various carbon 
emissions intensities. Subsequently, we believe that the Indonesian 
economy requires economic sophistication and knowledge accumula
tion in the working population to advance efficiency, emissions decou
pling and the reduction of CI from the total energy mix. This study 
endeavours to simulate the impact of economic sophistication on 
decomposed CI for the next ten years using the ECI. 

The primary contributions of this study are threefold. First, our study 
generates decomposed emissions intensities from oil, natural gas and 
coal usages over time. Second, it represents the first attempt to simulate 
the impact of the ECI on decomposed emissions intensities exclusively 
for the Indonesian economy, where primary sector emissions intensity 
has a pivotal role in economic growth. Third, using a dynamic simulated 
autoregressive distributed lag (DSARDL) approach, our simulation re
veals several new insights, demonstrating that augmentation of eco
nomic complexity helps reduce oil emissions intensity, whereas it has an 
insignificant role in influencing coal and gas emissions intensities. Our 
findings offer several practical policy implications. 

The remainder of this paper is organised as follows. Section 2 dis
cusses prior studies on the subject. Section 3 details our methodology 
and data. Section 4 presents the results and discussion. Section 5 is the 
conclusion of the paper and our recommendations. 

2. Review of literature 

Recent studies scrutinise the influence of the ECI on carbon emissions 
for various countries, e.g. Doğan et al. (2021) for developed countries; 
Neagu (2019) for European Union countries; Qayyum et al. (2021) for 
cross-countries; and Leitão et al. (2021) for BRIC. Previous studies 
demonstrate a positive correlation between CI and economic growth 
(Malzi et al., 2020; de Mendonça and Tiberto, 2017; Begum et al., 
2015a, 2015b), indicating that higher GDP growth is correlated with 
higher carbon emissions. Wang and Wang (2020) find a positive corre
lation between carbon emissions and economic performance. China's 
industrial CI decreased overall, which had an influence on reducing the 
nation's national CI. Grossman and Krueger (1995) explain that the 
initial phase of economic growth is accompanied by a commensurate 
phase of environmental degradation, which reduces with continued 
economic growth and eventually begins to dissipate. Several studies 
highlight the correlation between energy use and environmental 

degradation (e.g. Dong et al., 2022; Balsalobre-Lorente et al., 2018; 
Taghizadeh-Hesary et al., 2021; Sharma et al., 2021). 

Elheddad et al. (2021) consider several control variables, including 
fossil and non-fossil energy consumption, urbanisation and 
manufacturing production to examine the Environmental Kuznets Curve 
(EKC) for countries in the Organisation for Economic Cooperation and 
Development (OECD) with data from 2007 to 2016. The study concludes 
that e-finance can reduce carbon dioxide (CO2) emissions in OECD 
countries and significantly reduce carbon emissions. Sinha et al. (2020) 
in their study on EKC related to the United Nations' Sustainable Devel
opment Goals, validate the EKC hypothesis. Sinha et al. (2020) and Du 
et al. (2019) use economic data from 1996 to 2012 to examine the effect 
of green technology innovation on CO2 emissions, demonstrating that 
income levels have an important influence on green technology inno
vation. They also observe that green technology innovation has a 
threshold effect on income level and the mitigating effect has a signifi
cant impact on those with income levels exceeding the threshold. The 
study results indicate that innovation mechanisms should be imple
mented to reduce the costs of green technology diffusion in countries 
with underdeveloped economies. Another related investigation by 
(Chen et al., 2021) reveals that technological innovation positively im
pacts energy efficiency performance and economic growth negatively 
influences energy efficiency. 

Furthermore, strategic economic structural change has a positive 
impact on energy efficiency. Ali et al. (2021) find that production 
expenditure on clean technology innovation can simultaneously in
crease GDP and improve environmental conditions in the case of G7 
countries. Hao et al. (2021) support other research emissions-related by 
comparing the proportion of labour force to emissions levels, demon
strating that the higher the labour force ratio in the non-agricultural 
sector, the higher the emissions produced, which is also influenced by 
the movement of labour between industrial and non-industrial sectors. 
Tateishi et al. (2020) evaluate the role of various institutions based on 
the concept of transaction costs in GDP efficiency and greenhouse gas 
(GHG) mitigation efficiency, which allows the new institutional eco
nomics to have an empirical assessment of inefficiency in production. 
Their research results show that no institutions improve environmental 
efficiency or technological efficiency; emission reductions generate 
economic output. Furthermore, for countries with extremely high 
institutional quality, environmental efficiency and technological effi
ciency approach the efficient margin and exhibit higher fluctuations in 
fossil energy inputs at the environmental efficiency threshold. 

Countries with low institutional quality can exploit some gaps to 
improve environmental and technological efficiency by raising the 
quality of institutions. Through a decomposition of the Malmquist index, 
Song et al. (2020) demonstrate that increases in research collaboration 
related to overall industry–university innovation efficiency in China has 
an impact on technological progress, which is the main driving factor for 
advancing the decline in CI. According to the regression model results, 
CI in China indicates that increasing industrial and university research 
collaboration can indirectly reduce carbon emissions. Ma et al. (2020) 
argue that if China does not take adequate measures to reduce emissions, 
it will face serious environmental challenges in the next decade. 
Furthermore, green innovation has a considerable influence by 
encouraging capacity building for green innovation, which researchers 
demonstrate to reduce carbon emissions effectively. Zhang et al. (2020) 
reveal a significant and positive autocorrelation and heterogeneity of CI 
values between cities, indicating that technological changes and 
increased environmental efficiency are the primary factors behind CI 
changes. Technological advances have an essential role in reducing the 
CI value, while the rebound effect of carbon emissions can reduce this 
positive impact. The researchers also reveal that an insignificant effect 
of industrial structure optimisation and technological progress in 
reducing CI. The study recommends specific strategic governmental 
policies aimed at reducing CI, including promoting green technology at 
regional levels through collaboration with other green innovative cities. 
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The research can help local governments formulate urban development 
strategies and strengthen inter-city cooperation. 

Economic growth based on fossil fuels generates significant envi
ronmental pressure, such as CO2 emissions resulting from production 
and consumption. Lin and Chang (2015) examine the interrelationships 
between energy use and environmental quality, comparing Germany, 
Japan and the United States. Emissions data are sourced from five 
components of pollution coefficients, fuel mixture, energy intensity, 
economic growth and industrial structure. The most significant positive 
effect on emissions changes is correlated with economic growth. Sulphur 
dioxide (SO2) emissions in industry and other sectors have a downward 
trend due to improved fuel quality and pollution control; however, ni
trogen oxides (NOx) and CO2 emissions have a high increase. This 
demonstrates that energy efficiency improvement, pollution control and 
fuel substitution are the main options for saving SO2, NOx and CO2. 
However, not all industrial sectors have the same impact as emissions 
sources (Li et al., 2021) identify the chemical, metallurgical, electricity 
and hot water sectors as the primary transmission sectors. This research 
was conducted in China and proves that the first three production layers 
account for 95% of CO2 emissions. In contrast, the production efficiency 
policy in each sector, both downstream and upstream in the supply 
chain, has a significant impact on reducing CO2 emissions. Considering 
adjacent geographical positions when transporting raw materials from 
upstream to downstream industries can also reduce carbon emissions 
from the transportation industry. 

Regarding international trade supply chains, Tulpulé et al. (1999), 
Shapiro (2020) and Zhong et al. (2021) quantify trade models and 
environmental impacts, investigating the impact of CO2 emissions from 
shipping. The results indicate that the benefits of international trade 
outweigh the environmental costs of CO2 emissions. A proposed regional 
carbon tax on CO2 emissions from shipping would increase global wel
fare, raise the GDP of implementing regions and harm developing 
countries involved in international trade. However, by investigating the 
potential costs, risks and returns on investment, developed countries can 
reduce the impact of trade emissions by establishing emission reduction 
projects in developing countries (Gundimeda and Guo, 2003). 

According to a 2020 brief on Indonesia from the Massachusetts 
Institute of Technology's Observatory of Economic Complexity (OEC), 
the nation ranks 16th in the global economy in terms of GDP (current 
USD), 30th in total exports and total imports, 68th as the most complex 
economy according to the ECI and 117th in economic GDP per capita 
(current USD). Indonesia is a major exporter of coal briquettes, palm oil 
and fuel oil, and its exports are primarily to China, the United States and 
Japan. Indonesia was also the world's largest exporter of palm oil, lignite 
and stearic acid, and its three main imports were refined petroleum, 
crude oil and vehicle parts, which were primarily imported from China, 
Singapore and Japan. Reviewing Indonesia's general economic profile, 
several traded commodities are categorised as having a significant 
impact on the environment and climate change; however, the nation has 
made substantial progress in energy and security in the last decade, in 
terms of both access and reliability. The Indonesian government is 
optimistic about fulfilling its commitment to the energy transition in 
response to technological shocks to adapt to climate change under the 
Paris Agreement, by taking bold measures towards an environmentally 
sustainable energy system, particularly by reducing the CI of energy 
supply, which has increased substantially over the past decade. The 
energy system is essential for Indonesia's economic growth, as a source 
of export revenue, significant employment and competitiveness. As the 
largest energy consumer in Southeast Asia and a source of rising de
mand, Indonesia is critical to effective CI reduction. A robust and stra
tegic enabling environment for CI reduction, characterised by increased 
political commitment to energy transition, mechanisms to attract capital 

and investment and just transition pathways to ensure equitable distri
bution of costs and benefits from CI reduction are critical for accelerated 
progress in Indonesia. 

The OEC profile indicates that coal, oil and natural gas are Indo
nesia's primary trading commodities. Previous studies related to gas, oil 
and coal emissions have negative and significant interactions for fossil 
energy and GDP. One study demonstrates that non-renewable energy 
coupled with technological inefficiency has a detrimental impact on 
economic growth (Malzi et al., 2020). Changes from fossil to non-fossil 
energy use, if implemented in the short term, can impact oil, gas and 
coal price shocks because this transition necessitates the preparedness 
for funding related infrastructure for an operational system, which re
quires a considerable amount of time. As noted by (Amiri et al., 2021), 
oil price shocks, coupled with rising oil revenue, result in the expansion 
of the monetary base and ultimately lead to higher liquidity growth and 
inflation. The same is true for non-fossil energy commodities. In addi
tion, such energy price shocks lead to a depreciation in the real exchange 
rate and a decline in economic competitiveness. 

Our thorough review of previous literature identified no compre
hensive study highlighting the role of economic complexity in reducing 
decomposed measures of CI. Our study aims to fill this research gap. 

3. Methodology 

3.1. Data and sources 

We generate three development variables in this study, including 
carbon emissions–oil use intensity, carbon emissions–gas use intensity 
and carbon emissions–coal use intensity. Our main independent vari
ables are GDP per capita, a square form of GDP per capita and the ECI 
(Fig. 1). We use annual time-series data from 1966 to 2019 taken from 
the World Development Indicators database (World Bank, 2021), the BP 
Statistical Review of World Energy and Our World in Data, 2021 
(Table 1). 

Prior to estimating our model, we perform a unit root test to identify 
our variables' order of integration, applying augmented Dickey–Fuller 
(ADF) and Phillips–Perron (PP). 

3.2. Autoregressive distributed lag (ARDL) model 

We estimate our models by applying the standard ARDL model 
bounds testing approach, suggested by Pesaran et al. (2001a, b). The 
ARDL model has different advantages than other time series models to 
avoid ‘spurious regression’ problems in time series, as different lags can 
be used for regressand and regressor variables. The estimated results of 
the ARDL bounds test indicate that cointegration exists among the study 
variables. 

ΔEMOILt = α+ β1EMOILt− 1 + β2ECIt− 1 + β3LGDPCt− 1 + β4LGDPC2
t− 1

+
∑p

i=1
ν1ΔEMOILt− i +

∑q

i=0
ν2ΔECIt− 1 +

∑q

i=0
ν3ΔLGDPCt− 1

+
∑q

i=0
ν4ΔLGDPC2

t− 1 + εt

(1)  

ΔEMGASt = α+ β1EMOILt− 1 + β2ECIt− 1 + β3LGDPCt− 1 + β4LGDPC2
t− 1

+
∑p

i=1
ν1ΔEMOILt− i +

∑q

i=0
ν2ΔECIt− 1 +

∑q

i=0
ν3ΔLGDPCt− 1

+
∑q

i=0
ν4ΔLGDPC2

t− 1 + εt

(2) 
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ΔEMCOALt = α+ β1EMOILt− 1 + β2ECIt− 1 + β3LGDPCt− 1 + β4LGDPC2
t− 1

+
∑p

i=1
ν1ΔEMOILt− i +

∑q

i=0
ν2ΔECIt− 1 +

∑q

i=0
ν3ΔLGDPCt− 1

+
∑q

i=0
ν4ΔLGDPC2

t− 1 + εt

(3) 

Eqs. 1, 2 and 3 reveal the first difference, technological shock and 
emissions per capita. EMOIL represents oil emissions, EMCOAL indicates 
coal emissions and EMGAS represents gas emissions. β shows the lag 
dependent and independent parameters. The ν vector indicates the 
short-run parameters. To examine the cointegration relations, the 
following hypothesis must be estimated via Wald test. 

H0 : β1 = β2 = β3 = β4 = 0  

Ha : β1 ∕= β2 ∕= β3 ∕= β4 ∕= 0 

We can use the result of the F-statistics value to reject the null hy
pothesis. If the calculated F-statistics values are more significant than 
the upper bound value, this indicates the long-run association between 
the study variables and vice versa (Pesaran et al., 2001a, b). Finally, we 
estimate long- and short-run equations, including the error correction 
term. 

3.3. Dynamic simulated autoregressive distributed lag (DSARDL) 

To simulate our three empirical models, we apply the DSARDL 
technique to remove the complications of the existing ARDL for inves
tigating both the short-run and the long-run associations among the 
study variables. The DSARDL method is efficient for predicting, simu
lating and forecasting the actual change in independent variables and 
affecting the dependent variables, assuming the remaining variables in 
the equation are constant. This method can also solve the endogeneity 
problem, which can lead to spurious regression. To use the dynamic 
simulation ARDL method, we must ensure that the dependent variable is 
I(1), the regressors are not of an order of integration and the analysis 
estimates an ARDL model in error-correction form (Jordan and Philips, 
2018a, b). 

logEMOILt =α+β1EMOILt− 1+β2ECIt− 1+β3LGDPCt− 1+β4LGDPC2
t− 1+εt

(4)  

logEMGASt =α+β1EMOILt− 1+β2ECIt− 1+β3LGDPCt− 1+β4LGDPC2
t− 1+εt

(5)  

logEMCOALt =α+β1EMOILt− 1 +β2ECIt− 1 +β3LGDPCt− 1+β4LGDPC2
t− 1+εt

(6)  

Fig. 1. Economic Complexity Index visualisation for Indonesia.  

Table 1 
Description of variables and sources.  

Variable Description Unit Source 

Emissions–Oil 
Intensity 
(EMOIL) 

EMOIL indicates tonnes 
of carbon emissions per 
TWh of oil use. 

Emissions 
tonnes/oil use 
TWh 

BP Statistical 
Review of 
World Energy, 
2021 

Emissions–Gas 
Intensity 
(EMGas) 

EMGAS indicates 
tonnes of carbon 
emissions per TWh of 
gas use. 

Emissions 
tonnes/gas use 
TWh 

BP Statistical 
Review of 
World Energy, 
2021 

Emissions–Coal 
Intensity 
(EMCoal) 

EMCOAL indicates 
tonnes of carbon 
emissions per TWh of 
coal use. 

Emissions 
tonnes/coal use 
TWh 

BP Statistical 
Review of 
World Energy, 
2021 

GDP per capita 
(LGDPC) in log 
form 

As a proxy of real 
economic growth, the 
value of the output of a 
certain period based on 
the basic or constant 
price in an economy. 

Ratio of 
nominal GDP is 
divided by GDP 
deflator (R) 

World Bank, 
2021 

Economic 
Complexity 
Index (ECI) 

The ECI measures the 
relative knowledge 
intensity of an 
economy. The higher 
the index, the more 
economically complex 
a country is determined 
to be. 

Index Our World in 
Data, 2021  

Table 2 
Descriptive statistics.  

Variable Obs Mean Std dev Min Max 

EMOIL  54  12.488  0.170  12.104  12.849 
EMGAS  54  12.253  0.469  11.487  13.974 
EMCOAL  54  12.713  0.327  11.692  13.315 
ECI  54  − 0.715  0.613  − 1.823  − 0.006 
LGDPC  54  3.247  0.236  2.809  3.6484 

Source: Author calculation. 
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4. Results and discussion 

4.1. Descriptive statistics result 

Table 2 presents a summary of the descriptive statistics of our 
respective variables in natural logarithmic forms. The mean values of 
EMOIL, EMGAS and EMCOAL marginally vary from one another. The 
table also shows that EMOIL has a minimum standard deviation. Our 
analysis indicates that variation in the ECI is highest over time compared 
with other variables. 

4.2. Emissions intensities and economic complexity under standard ARDL 

The energy sector sets a GHG emissions reduction target of 314 
million tonnes, or the equivalent of 11%, under scenario conditions 
excluding unconditional reduction requirements. Indonesia aspires to 
achieve this emissions reduction goal by implementing sector-based 
mitigation measures. Fig. 2 demonstrates the decomposed CI from 
1966 to 2019. The CI of natural gas use dropped in 1970, remaining 
constant over time. Coal intensity remains highest in comparison to oil 
and gas intensities. Fig. 2 also indicates that gas intensity is lower, 
reflecting natural gas as a transitional energy. The carbon emissions 
intensity of oil use is between that of coal and oil use. 

Tables 3a and 3b summarise our results regarding the order of 
integration of our respective variables. The table clearly shows that our 
variables follow a mixed integration order under ADF and PP ap
proaches. ADF has certain advantages in terms of managing serial cor
relation by adding autoregressive terms with sufficient lag orders, while 
the PP approach is efficient for managing the non-normal properties of 
the data due to the non-parametric attributes. Non-stationarity and the 

mixed order of integration indicate the validity of using the standard 
ARDL bounds testing approach and DSARDL to estimate our three 
empirical models. 

Table 4 presents the results of our three empirical models obtained 
from the standard ARDL techniques. Regarding Model 1, the coefficient 
of the error correction mechanism is negative and significant, implying 
that oil emissions intensity, economic growth and ECI converge towards 
the long-run equilibrium. Table 4 demonstrates that Model 1 adjusts 
68% per year towards the long-run equilibrium after any exogenous 
shock. The coefficient of GDP is negative, whereas the coefficient of the 
quadratic form of GDP is positive and significant, indicating that emis
sions–oil intensity and economic growth follow a U-shaped relationship. 
Our results imply a contradiction of the EKC hypothesis, consistent with 
prior studies (e.g. Begum et al., 2015a, b; Sohag et al., 2019a, b). The 
most striking finding is that the long-run coefficient of the ECI is nega
tive and significant, implying that an increase of ECI helps to reduce 
emissions–oil intensity. These findings partially with previous research 
demonstrating that ECI reduces carbon emissions (Qayyum et al., 2021; 
Doğan et al., 2021; Leitão et al., 2021; Neagu, 2019). 

Regarding Model 2, with gas emissions intensity as the dependent 
variable, we find 38% adjustment rates towards the long-run equilib
rium, which is lower than Model 1. The coefficient of GDP is positive, 
whereas the coefficient of the square form of GDP is negative and sig
nificant, indicating that the emissions–gas intensity and economic 
growth follow an inverted U-shaped relationship. Our findings partially 
echo previous studies confirming the EKC for several developing and 
developed countries (Sohag et al., 2021; Shahbaz et al., 2020a, b; Zheng 
et al., 2019). Our finding can be explained by the fact that Indonesia has 
significant reserve of natural gas, which is a transitional energy. The 
nation extracts approximately twice as much natural gas as it uses; 
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Fig. 2. Decomposed carbon emissions intensities 1966–2018.  

Table 3a 
Order of integration.  

Unit root test results table (ADF) 

At level  

ECI EMCOAL EMGAS EMOIL LGDPC 

With constant  − 0.7319  − 3.4965**  − 4.4321***  − 1.3248  − 0.9082 
With constant & trend  − 1.2996  − 4.0482**  − 4.2119***  − 2.3463  − 2.5858 
Without constant & trend  − 1.3710  − 0.3716  − 1.0299  − 0.2338  8.5307   

At first difference  

ΔECI ΔEMCOAL ΔEMGAS ΔEMOIL ΔLGDPC 

With Constant  − 6.7694***  − 6.8102***  − 9.0735***  − 6.5150***  − 5.3876*** 
With Constant & Trend  − 6.7015***  − 6.7290***  − 9.3290***  − 6.4325***  − 5.3621*** 
Without Constant & Trend  − 6.7464***  − 8.5360***  − 9.5313**  − 7.4691***  − 2.8084*  

*** Indicates 1% significance level. 
** Indicate 5% significance level. 
* Indicate 10% significance level. 
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however, the extracted amount fails to meet domestic demand. The 
Indonesian government-owned gas company, Perusahaan Gas Negara 
cannot satisfy domestic demand. The coefficient of ECI is negative but 
insignificant, implying that ECI helps to reduce gas emissions intensity 
overall. 

Model 3 presents the dynamic impact of economic growth and ECI on 
coal emissions intensity. The coefficient of ECI is 43% for coal emissions 
intensity. The convergence rate for emission coal intensity is between 
the emissions intensities of oil and gas. Model 3 adjusts 43% per year 
towards the long-run equilibrium after any exogenous shocks. The co
efficient of GDP is positive, while the coefficient of the square form of 
GDP is negative and significant, indicating that emissions–coal intensity 
and economic growth follow an inverted U-shaped relationship sup
porting the EKC hypothesis; however, the coefficient of ECI appears to 
be positive and insignificant. Indonesia has been a leading coal exporter 
and user since 2000. It appears that growing economic sophistication 
failed to replace coal energy with cleaner energy in Indonesia due to 
short-run economic gain. 

4.3. Emission intensities and economic complexity under DSARDL 

We next present the response of emissions intensities to the ECI using 

the DSARDL approach. Fig. 3 presents the response of emissions–oil use 
intensity to 5% positive shocks in the ECI for 2020–2040, revealing that 
the response curve sharply moves down towards the positive shocks of 
the ECI. Since the response curve and confidence interval are below the 
zero line, a positive shock in economic complexity appears to lead to 
reduced emissions–oil intensity, consistent with the standard ARDL 
approach. The response of emissions–oil intensity to a 5% negative 
shock in the ECI is the mirror version of the positive shock. Emissions–oil 
intensity also responds negatively towards a positive shock in 5% eco
nomic growth. The magnitude of response to GDP growth is higher than 
the response to the ECI. As an emerging country, Indonesia is moving 
towards the nature of developed countries to encounter the EKC. 

According to Shahbaz et al. (2020a, b), who examined CO2 and its 
determinants, financial development and research and development 
(R&D) are the keys to environmental protection at industrial age 4.0. 
R&D may be a solution for reducing environmental pollution, as the 
intensity of carbon emissions from the adjustment of the industrial 
structure in China from poverty alleviation across the country presents a 
general downward trend due to supply-side reforms, environmental 
regulations and industrial restructuring (Fu et al., 2021). The problem of 
gas, oil and coal emissions is a general industrial dilemma; however, the 
question remains regarding who is most responsible: the upstream in
dustry or the downstream industry? Investigations of the environmental 
impact of upstream and downstream industries are conducted by Li et al. 
(2021) and Hu et al. (2021), arguing that encouraging transmission 
centres to increase efficiency can reduce CO2 emissions in upstream 
supply chains. The researchers consider companies to be the main 
transmission centres, and high efficiency refers to fewer intermediary 
inputs and lower costs, which enterprises will welcome. One of the 
emissions reduction policies in Indonesia is energy conservation, which 
is conducted by raising energy use efficiency from upstream to down
stream, considering that it has an even impact on emissions in Indonesia 
(Minister of Environment Life and Forestry Indonesia, 2021). The crit
ical factors for maintaining economic growth under emissions reduction 
targets are consumption and investment and how policymakers strate
gically respond to the above results. At the same time, Indonesia also can 
advance the use of renewable energy to reduce carbon emissions. 
Transitional opportunities include geothermal power, solar power, 
small-scale hydroelectric power and biomass, all of which are compat
ible with the Paris Agreement target (Minister of Environment Life and 
Forestry Indonesia, 2021). 

Fig. 4 presents the response of emissions–gas use intensity to the ECI, 
which is positive and significant, implying that economic complexity 
growth may not reduce the emissions–gas use intensity. Nevertheless, 
gas use intensity responds negatively to a 5% increase in GDP per capita. 
Our result can be explained by the fact that the technology in gas use 
industries remains constant, whereas the technology in oil-oriented 

Table 3b 
Order of integration.  

Unit root test results table (PP)  

ECI EMCOAL EMGAS EMOIL LGDPC 

With constant  − 0.7683  − 3.5208  − 5.0371***  − 1.9041  − 0.8566 
With constant & trend  − 1.4018  − 4.0482  − 4.3583**  − 3.4552*  − 2.2731 
Without constant & trend  − 1.3452  − 0.4842  − 1.0545  0.0959  7.3160   

At first difference  

ΔECI ΔEMCOAL ΔEMGAS ΔEMOIL ΔLGDPC 

With constant  − 6.7748***  − 8.4697***  − 9.0751  − 7.9185***  − 5.3540*** 
With constant & trend  − 6.7075  − 8.3821  − 9.9195  − 7.7858  − 5.3276 
Without constant & trend  − 6.7164  − 8.5360  − 9.0313  − 7.9691  − 2.9084*  

*** Indicates 1% significance level. 
** Indicate 5% significance level. 
* Indicates 10% significance level. 

Table 4 
Dynamic impact of technology on decomposed emissions intensity.  

Regressor Emissions–oil 
intensity (M1) 

Emissions–gas 
intensity (M2) 

Emissions–coal 
intensity (M3) 

Long-run coefficients 
LGDPCt− 1 − 8.9457*** 7.2446*** 8.6534*** 

(1.8670) (1.0915) (0.7650) 
LGDPCt− 1

2 1.3212*** − 1.0808*** − 1.4502*** 
(0.2825) (0.3130) (0.2191) 

ECIt− 1 − 0.1037*** − 0.0681 0.0500 
(0.0450) (0.3158) (0.2484)  

Short-run coefficients 
ΔLGDPC − 6.1061*** 2.7744*** 3.7394*** 

(1.3273) (0.9778) (1.0498) 
ΔLGDPC2 1.1132*** − 0.41392** − 0.6266*** 

(0.2176) (0.1935) (0.1898) 
ΔECI − 0.0708*** − 0.0261 0.0216 

(0.0376) (0.1191) (0.1069) 
ECMt− 1 − 0.6825*** − 0.3829*** − 0.4321*** 

(0.1184) (0.0981) (0.1175) 
N 58 58 58  

*** Indicates 1% significance level. 
** Indicates 5% significance level. 
* Indicates 10% significance level. 

G. Chandrarin et al.                                                                                                                                                                                                                            



Technological Forecasting & Social Change 181 (2022) 121758

7

Fig. 3. Response of carbon emissions–oil intensity to ECI and economic growth.  

Fig. 4. Response of carbon emissions–gas intensity to ECI and economic growth.  
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industries is rapidly improving; therefore, any development in economic 
complexity does not reduce gas emissions intensity in the context of 
Indonesia. 

Fig. 5 presents the response of emissions–coal use intensity to 5% 
positive and negative shocks in ECI and economic growth. A 5% positive 
shock of ECI fosters insignificant emissions–coal use intensity. 
Conversely, a negative shock of economic complexity induces a down
ward trend in emissions–coal use intensity, in a mirror image of the 5% 
positive shock. Interestingly, emissions–coal use intensity responds 
negatively towards 5% positive shocks in GDP per capita growth. Our 
result reflects the reality of higher economic growth helping the country 
move from a traditional production paradigm to a technology-based 
growth paradigm, which eventually helps to reduce overall carbon 
emissions intensity. 

In summary, our empirical findings indicate that to achieve emis
sions reduction goals, Indonesia should simultaneously improve eco
nomic growth and energy efficiency by improving technology. To begin 
this transition, energy composition must move from coal to natural gas 
and oil use and eventually to cleaner energy. 

5. Conclusion and policy implications 

Given Indonesia's emissions reduction target, we measure the impact 
of economic growth and ECI on three measures of CI, including oil, gas 
and coal, using historical data. In the second stage, we simulate the 
response of carbon emissions intensities for oil, gas and coal use to 
economic growth and the ECI applying a DSARDL approach for a 20- 
year time horizon. Our investigation reveals three noteworthy findings. 

First, the relationship between oil emissions intensity and economic 
growth contradicts the EKC hypothesis. Notably, higher economic 
complexity helps to curb oil emissions intensity in the long-run through 

technological progress in Indonesia; thus confirming our proposition 
that technological progress in oil use industries has experienced a sig
nificant gain in energy efficiency. Second, the gas emissions intensity 
and economic growth nexus validates the EKC hypothesis. Notably, ECI 
has an insignificant, but recognisable, role in limiting gas emissions 
intensity. We argue that Indonesia has significant natural gas reserves, 
which is a transitional energy; however, the extracted amount of natural 
gas fails to meet domestic demand. In addition, technological progress in 
gas use industries remains stagnant over time; hence, ECI appeared 
insignificant in influencing gas emissions intensity. Finally, increased 
ECI has an insignificant influence on coal emissions intensity, as the 
technology in coal industries has remained constant over time. 
Indonesia has become a leading coal exporter and user since 2000. 
Economic sophistication failed to replace coal energy with cleaner en
ergy in Indonesia due to short-run economic gain; therefore, our findings 
indicate that Indonesia could possibly achieve the emissions reduction 
target by advancing ECI and quality economic growth. 

Our findings regarding the influential role of the ECI in reducing oil 
emissions intensity indicates that Indonesia requires higher production 
capabilities and labour and capital underpinning the growth of a 
knowledge economy, such as infrastructure development, intellectual 
property rights, policies and skilled labour. Moreover, to achieve emis
sions reduction goals, Indonesia must simultaneously advance both 
economic growth and energy efficiency through green technology. En
ergy composition must initially transition from coal to natural gas and 
oil use and eventually cleaner energy. 
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