

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES

Home > Archives > Vol 1, No 1 (2017)

Vol 1, No 1 (2017)

Following the end of Millennium Development Goals (MDGs) in 2015with 8 goals, United Nation (UN) develops the sustainability of the world's goalsthrough Sustainable Development Goals (SDGs) with 17 goals. As well as othercountries in the world, the Indonesian government is also working towardsachieving these objectives in the government, business and civil society sectors to co-operate with the UN and the Indonesian government started mobilizing toachieve the Sustainable Development Agenda by 2030. Universal, inclusive and indivisible, the Agenda calls for action by all countries to improve the lives ofpeople everywhere.

Table of Contents

Articles

Articles	
EDITORIAL INTRODUCTION Sustainable Development Goals 2030: Challenges and Its Solutions DOI: 10.26905/icgss.v1i1.1591 Diana Zuhroh, Dina Poerwoningsih, Pindo Tutuko, Sari Yuniarti	PDF
Finance and Technology: Challenges and Solutions DOI: 10.26905/icgss.v1i1.1592 Milind Sathye	PDF
Multiplatform Visual Novel for Culture Education in a Part of Using ICT for Developing a Lifelong Learning DOI: 10.26905/icgss.v1i1.1598 Moechammad Sarosa, Zamah Sari, Suhari Suhari, Hilmy Bahy Hakim	PDF
Quadruple Helix Model in Inspiring the Development of Telematics Creative Industries Community-Based (The Study of Phenomenology on Industrial Startup in Malang) DOI: 10.26905/icgss.v1i1.1593 Dodot Sapto Adi	PDF
Personal Factors on The Behavior of Interactionist Traders in a Traditional Market Environment and Semi Modern (Ethnographic Study on the market in Malang Regency) DOI: 10.26905/icgss.v1i1.1595 Saudah Saudah	PDF
BUILDING SYSTEM OF PERSONNEL MOVEMENT USING GLOBAL POSITIONING SYSTEM (GPS) DESIGN DOI: 10.26905/icgss.v1i1.1821 Anwar Saryanto, Aries Boedi Setiawan, Suherman Suherman, Yusuf Novrianto	PDF
Design of Room Lighting Electric Power Savings Using PIR Sensor DOI: 10.26905/icgss.vli1.1822 Arnoldus V. Kokaa, Aries Boedi Setiawan, Mochammad Viky Aditya, Bayhaky Bayhaky	PDF
IMPLEMENTATION OF ACCELEROMETER SENSOR AND GPS MODULE FOR SMART BIKE DESIGN DOI: 10.26905/icgss.v1i1.1823 Faisal Alfaeru, Aries Boedi Setiawan, Nachrowi Nachrowi, Rachmat Hidayat S Hidayat S	PDF
JAMMING DESIGNING OF GSM AND CDMA SIGNAL DOI: 10.26905/icgss.v1i1.1824 Joseph Bryan R, Nachrowie Nachrowie, Aries Boedi Setiawan, Sanditiya Kristian S, Dinar Hana S. W	PDF
The Total Impulse Study Of Solid Propellants Combustion Containing Activated Carbon From Coconut Shell As A Catalyst DOI: 10.26905/icgss.v1i1.1825 Nur Rachman Supadmana Muda, I.N.G.Wardana I.N.G.Wardana, Nurkholis Hamidi, Lilis Yuliati, Aries Boedi Setiawan	PDF
MONITORING SYSTEM DESIGN SYSTEM AS MEASURING TEMPERATURE MEASURES DOI: 10.26905/icgss.v1i1.1826 Prima Prayuda, Aries Boedi Setiawan, Nova Suryangga	PDF
The Improvement of Education Quality DOI: 10.26905/icgss.v1i1.1597 Yossita Wisman, M. Yahya Miskat A., Putu Sugiantiningsih	PDF
Giving of Media Modules Reviewed from Personal Hygiene Against Capitis Pediculose Incidence in Islamic Boarding School of Al-Fattahiyyah Tulungagung DOI: 10.26905/icgss.v1i1.1596 Prima Dewi, Ikko Ambar Noviana	PDF
Study of Residential Development in Urban Fairies DOI: 10.26905/icgss.v1i1.1827 Eko Agus Priyono, Pindo Tutuko	PDF
PLANNING PREFABRICATED HOMES USING THE FASTER, BETTER, CHEAPER CONCEPT DOI: 10.26905/icgss.v1i1.1828 Devie Agung, Pindo Tutuko, Hery Budiyanto, Dina Poerwoningsih	PDF
Spatial Patterns on Traditional Houses in Java as an Effort to Preserve Historic Buildings DOI: 10.26905/icgss.v1i1.1829 Johan Wahyudi, Pindo Tutuko, Hery Budiyanto	PDF

. -

. - . -

Journal Help
USER
Username
Password
Remember me
NOTIFICATIONS
» View » Subscribe
JOURNAL CONTENT
Search
Search Scope
AII 🕶
Search
Browse » By Issue » By Author » By Title » Other Journals
FONT SIZE
INFORMATION

» For Readers» For Authors» For Librarians

OPEN JOURNAL SYSTEMS

Empowerment Salt Farmers to Alleviate Poverty DOI: 10.26905/icgss.v1i1.1832 Mohammad Hidayaturrahman, Nisful Laily, Eko Agusrianto	YUF
The Effect of Human Resource Management Management, To Performance Through Innovation Organization DOI: 10.26905/icgss.v1i1.1833 M. C. Sina Setyadi	PDF
Creative Industry Competitiveness in Indonesia (Study on Creative Industry Map) DOI: 10.26905/icgss.v1i1.1834 Iwan Kurniawan Subagja	PDF
Effect of Implementation of Quality Assurance and Business Incubator on Entrepreneur Quality of SMEs in East Java DOI: 10.26905/icgss.v1i1.1835 Syaiful Arifin, Rudy Wahyono, Sihwahjoeni Sihwahjoeni	PDF
The Effect of Electronic Word of Mouth, Trust, Perceived Risk, and Site Quality on Transactions using E-Commerce DOI: 10.26905/icgss.v1i1.1836 Tunjung Candra Ervia Danis, Budi Istiyanto, Elia Ardyana	PDF
THE EFFECT OF TRANSFORMATIONAL LEADERSHIP, ORGANIZATIONAL CULTURE AND EMPLOYMENT MOTIVATION ON THE MANAGERIAL PERFORMANCE THROUGH ORGANIZATIONAL CITIZENSHIP BEHAVIOR DOI: 10.26905/icgss.v1i1.1837 T.A Hariyono T.A Hariyono	PDF
Analysis of Competitiveness Traditional Retail To Modern Retails in Consumer Perspective DOI: 10.26905/icgss.v1i1.1838 Sunaryati Hardiani, Nanik Sisharinia	PDF
The Application of Sustainable Development Concept for Tourism Development in Indonesia DOI: 10.26905/icgss.v1i1.1839 Andini Risfandini, Sunardi Sunardi	PDF
The Influence of Social Media and Service Quality on Satisfaction and Loyalty DOI: 10.26905/icgss.v1i1.1840 Sandi Eka Suprajang, Nazief Nirwanto, Achmad Firdiansjah	PDF
Optimizing Development in Research-Based Villages by Utilizing ADD DOI: 10.26905/icgss.v1i1.1841 Boby Indra Prayoga	PDF
Sustainability in Architecture of traditional Sasak settlements in Lombok DOI: 10.26905/icgss.v1i1.1842 Agus Zulkarnain Arief, Achmad Tutut Subadyo	PDF
OPTIMIZING THE ROLE OF ARTIFICIAL LIGHTING IN COMMERCIAL BUILDINGS DOI: 10.26905/icgss.v1i1.1843 Nimas Ayu Retno Wulan, Dina Poerwoningsih, Nurhamdoko Bonifacius	PDF
IDENTIFICATION OF THE PHILOSOPHY, TRADITIONS AND THE CONCEPT OF ISLAMIC EDUCATION AND ITS IMPLEMENTATION IN THE DESIGN OF ARCHITECTURE DOI: 10.26905/icgss.vii1.1845 Achmad Izzuddin, Dina Poerwoningsih	PDF
Challenges of Green Open Space (Its Roles, Forms and Functions) in the Era of Sustainable Development Goals DOI: 10.26905/icgss.v1i1.1844 Juwito Juwito, Dina Poerwoningsih	PDF
Models of Sustainable Lake Tourism Design in Ranu Klakah, Lumajang Region, East Java, Indonesia DOI: 10.26905/icgss.v1i1.1846 Junianto Junianto, Rosalia Niniek Sri Lestari, A. Tutut Subadyo	PDF
Review The Design of "Kampung Tematik Malang 2016" on Kampung Kramat Kasin, Malang, Indonesia DOI: 10.26905/icgss.v1i1.1847 Josaf Sayoko, Erna Winansih, Junianto Junianto	PDF
Design of "Kayangan Api Park" at Bojonegoro as Facilities The 15 Th National Olympic Games DOI: 10.26905/icgss.v1i1.1848 A. Tutut Subadyo, Junianto Junianto	PDF
The Effectivity of "Pokdarwis" Role on Successfully Marketing of Tourism Village Towards "Mega Tourism: Batu City For The World" DOI: 10.26905/icgss.v1i1.1849 Syarif Hidayatullah, Ike Kusdyah Rachmawati, Umu Khouroh, Irany Windhyastiti	PDF
VILLAGE PERFORMANCE IN SOCIETY EMPOWERMENT AT MERJOSARI VILLAGE LOWOKWARU DISTRICT MALANG CITY DOI: 10.26905/icgss.v1i1.1850 Yali Kogoya, Agus Sholahuddin, Kridawati Sadhana	PDF
Educational Leadership and Group Decision Making DOI: 10.26905/icgss.v1i1.1851 Miskat Miskat	PDF
The Authenticity and Social Distance Effect on Motivation of Corporate Social Responsibility and Implication on Company Image on PT Amerta Indah Otsuka, Pasuruan - Indonesia DOI: 10.26905/icgss.vli1.1852 Mohammad Syaifuddin Ali Sahidu, Grahita Chandrarin, Suriptono Suriptono	PDF
The Role of Society in Increasing Voter Participation in Pilkada in Kab. Deli Serdang DOI: 10.26905/icgss.v1i1.1853 Boby Indra Prayoga, Mahyudin Situmeang, El Azhari	PDF
Motivation Effect on UMKM Performance in Banjarmasin City: Overview of Locus of Control as a Contingency Factor	PDF

DOI: 10.26905/icgss.v1i1.1854 Titien Agustina, Grahita Chandrarin, Abdul Manan

Site Setup Patirtan Watugede Singosari, Malang, Indonesia As a Spiritual Tourism Object DOI: 10.26905/icgss.v1i1.1855
Rosalia Niniek Sri Lestari, Junianto Junianto, A. Tutut Subadyo

The Social Phenomenon in "Majelis Ta'lim" as The Effective Mean of A Family that Carries Out Islamic Values in Their Home
DOI: 10.26905/icgss.v1i1.1856
Etikawati Triyosoputri

PDF

PDF

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES

Home > About the Journal > **Editorial Team**

Editorial Team

Editors

Dr. Pindo Tutuko, Universitas Merdeka Malang, Indonesia
Dr. Ir. Dina Poerwoningsih, [SCOPUS ID: 57194446655] Department of Architecture, University of Merdeka Malang
Vichy Fathoni, University of Merdeka Malang
Vichy Fathoni, University of Merdeka Malang, Indonesia
Vichy Fathoni, University of Merdeka Malang

OPEN JOURNAL SYSTEMS	_
Journal Help	_
USER	
Username	
Password	1
Remember me	-
Login	
NOTIFICATIONS	
» View» Subscribe	
JOURNAL CONTENT	
Search	
Search Scope	
All 💙	
Search	
Browse	
» By Issue	
» By Author» By Title	
» Other Journals	
FONT SIZE	
INFORMATION	
v. For Dondoro	
» For Readers» For Authors	
» For Librarians	

PLANNING PREFABRICATED HOMES **USING THE FASTER, BETTER, CHEAPER CONCEPT**

Devie Agunga, Pindo Tutukob, Hery Budiyantob, Dina Poerwoningsihb

^aMagister of Architecture, University of Merdeka Malang, Jl. Terusan Raya Dieng No. 59, Malang, Indonesia ^bDepartment of Architecture, University of Merdeka Malang, Jl. Terusan Raya Dieng No. 62-64, Malang, Indonesia Corresponding Author: E-mail devie@unmer.ac.id

ABSTRACT

Prefabrication as a technology that has long been used in Europe, have a big potential to help fulfill the housing backlog in Indonesia. Project time and cost efficiency along with multiple other benefits have proven that prefabrication system is a valid alternative to the conventional construction system. One of the biggest problem delaying the implementation was the perception of construction practitioners and home buyers about the structural and visual quality, and a prefabricated home owners' satisfaction when compared to a conventionally built home owners'. Faster, Better, Cheaper concept may be the guide to planning a house building project that can be finished faster, be more cost efficient, while achieving higher user satisfaction.

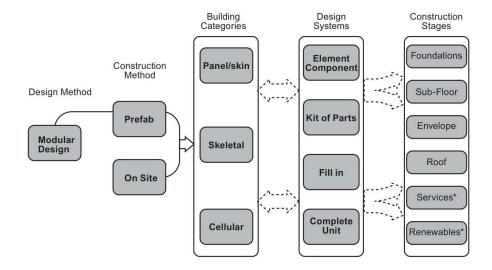
Keywords: prefabrikasi, faster, better, cheaper

1. Introduction

A prefabricated home is defined as the production of the entire or parts of the house's component in another area before being transported to the project site to be assembled (Steinhardt et al., 2013). Prefabrication system in building quality, affordable homes has been widely implemented since the end of the Second World War in affected countries. (Thanoon et al., 2002).

Table 1 Median prices of conventional-built homes compared to median annual incomes

(Source: Luther, 2009; Demographia International Housing Affordability Survey, 2009)


		/		
Country (city size considered)	Affordabilit Index*	y Median House Price	Median Household Income	
Australia (Population 50,00	6.3	A \$357,407	A \$57,078	
Canada (Population 100,0		CAN \$212,398	CAN \$57,682	
Ireland (Population 50,00	5.3	£306,220	£57,960	
New Zealand (Population 75,00	5.7	NZ \$316,113	NZ \$55,125	
United Kingdon (Population 150,0		£145,300	£26,181	
United States (Population 400,0	3.6	US \$188,699	US \$52,706	

Affordability Index* – 'slightly unaffordable' >3.0, 'seriously unaffordable' >4.51, 'severely unaffordable' >5.1

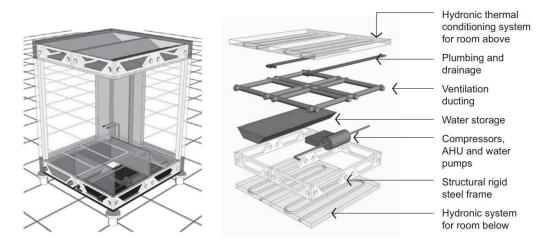

The definition of prefabrication as discussed in this paper is a house building project with relatively high content of prefabricated using Panel, Pod, Modular or Complete (Volumetric) systems that allows executing the project with high time and cost efficiency.

Table 2 Types of prefabricated building systems (Source: Steinhardt et al., 2013; Bell, 2010; Gibb & Isack, 2003)

Prefab. level	Type	Definition
High	Complete	Box-form, volumetric, completed buildings delivered to a building site
	Modular	Structural, volumetric, potentially fitted-out units delivered to site and joined together
	Pods	Volumetric pre-assembly. Fully fitted-out units connected to an existing structural frame such as bathroom or kitchen pods
	Panels	Structural, non-volumetric frame elements which can be used to create space, such as Structural Insulated Panels (SIPs), precast concrete panels and structural wooden panels
	Component sub-assembly	Precut, preassembled components such as doors, and trusses not feasible to produce on site
Low	Materials	Standard building materials used in onsite construction

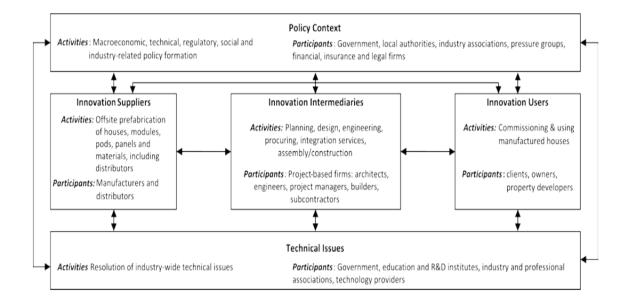
Figure 1 Categorization of prefabricated systems (Sumber: Luther, 2009; Luther, Morechini, and Pallot, 2007)

Figure 2 Volumetric prefabricated material example (Source: Luther, 2009; Multihouse and Digitales Bauen, 2009)

Prefabrication technology in a building construction project is judged to be effective in finishing the project faster, better and cheaper in comparison to conventional construction projects (Wong et al., 2003).

Table 3 Prefabricated system benefits when compared to the conventional system (Source: Wong et al., 2003)

Factor	Prefabrication	On-site	
Quality	In a climate-controlled environment using efficient equipment operated by well-trained people.	Uncertain weather can result in less-than expected construction.	
Speed	Speedy process (up to 70% less) Time consuming. The process car delayed by weather or scheduling		
Cost	Greater control over manufacturing results dramatically reduces the chance of cost overruns.	Uncontrollable variables such as weather and scheduling can increase the construction cost	
Versatility	Less	More	
Site space	Panels arrive on a flat-bed trailer and are installed with sufficient listing plants.	Bigger space is needed. In addition costly scaffolding is often necessary for installation.	
Site refuse	Less waste is generated at the site.	A significant amount of waste produced and removed from the site, which often adds to cost.	


Table 4 Benefit in implementing prefabrication system to the stakeholders (Source: Luther, 2009; Multihouse©)

Owner	Architect/ Engineer	Manufacturer	Government	University & TAFE	Builders
affordability fast delivery mproved quality ower energy bills mproved IEQ [Indoor Environmental Quality) sustainable materials integrated renewable energy systems superior fire protection increased guarantees reduced environmental mpact reduced air eakage (increased thermal efficiency) greater piece-of-mind	organised building services modularisation engineered building envelope manufactured quality lightweight system improved strength to weight ratio minimised waste better environmental & energy rating greater repetition of components superior fire rating improved acoustics reduced air leakage	material optimisation structural integrity labour efficiency reduced material handling 24 hour operation less assembly time lean manufacturing improved quality quick and easy change over inventory control flexibility of manufacturing greater output component repetitions flexible labour use	meeting housing demands providing affordability regional employment showing leadership in a new industry exportability of product & skills workforce skill development spin-off industry replication of factories provides employment innovation meeting GHG environmental targets	engagement with local industry manufacturing process R&D product innovation & development develop research potential of Higher Degree Research students skills and training Aust. Research Council research grants product design innovation materials research modular design research construction innovation automation research national recognition	greater simplification of assembly cost benefits speed of assembl lightweight handling compatibility of components reduced source supplier reliability of construction quality predictability of delivery reduced environment al impacts improved OH&S traceable product offer greater quality assurance reduced air leakage improved energy performance

Although prefabrication have lots of benefit to offer, the system's popularity in UK can not be compared to the conventional house building system (Lovell, H. & Smith, S., 2010). Japan, US, Australia and other countries in Europe and Asia also experienced challenges in trying to implement prefabrication (Thanoon et al., 2002). Some challenges facing

implementation of prefabrication system in Malaysia have been identified by Thanoon et al. (2002) as follows:

- a) Drastic fluctuations in the housing makes large initial investment unattractive to investors
- b) Lack of trained workers capable of doing high precision constriction work
- c) Plurality of the construction industry made it difficult for homeowners, contractors and engineers to make informed decisions on prefabrications system at the planning stage
- d) Lack of research and development of prefabrication systems that incorporate local material content.
- e) Benefits of implementing prefabrication in house building projects is not well documented enough to compete with the conventional building system
- f) Many projects implementing prefabrication ended up producing lower quality but higher costing buildings when compared to the conventional system.
- g) Lack of government support in socializing the prefabrication system

Figure 3 Innovation system of prefabricated housing (Source: Steinhardt et al., 2013; based on Gann and Salter, 2000)

Indonesia as one of the most populous countries in the world is also facing problems in fulfilling the housing needs of its people.

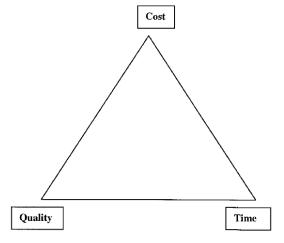
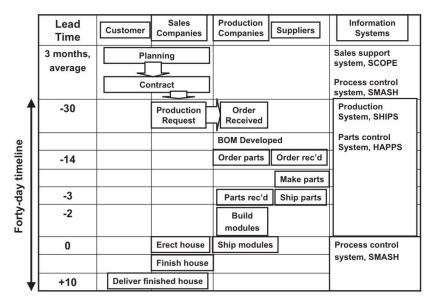

TAHUN	JUMLAH PENDUDUK (orang)	JUMLAH RUMAH TANGGA (ruta)	PERSENTASE RUMAH TANGGA MILIK (%)	JUMLAH RUMAH TANGGA MILIIK (ruta)	JUMLAH RUMAH TANGGA NON MILIK/ BACKLOG KEPEMILIKAN RUMAH (ruta)
(1)	(2) = BPS	(3) = BPS	(4) = BPS	(5) = (3) X (4)	(6) = (3) - (5)
2010	237.641.326	61.390.300	78.00	47.884.434	13.505.866
2015	255.461.700	65.503.000	82,63	54.125.129	11.377.871

Table 5 Housing backlog in Indonesia (Source: Website PPDPP.id, 4 Agustus 2017)

The prefabrication system is one of the ways implemented in other countries to give the people good quality, affordable homes (Thanoon et al., 2002). That's why the planning criterias to maximize the potential and minimize the risk of implementing prefabrication in home building projects in Indonesia need to be researched

2. Discussion

Construction project success is usually measured in three criterias. Time, quality and cost, more commonly known as the Iron Triangle. All three criterias is considered so closely connected that it is impossible to change one without affecting the other (Atkinson, 1999).


Figure 4 Iron Triangle (Source: Atkinson, 1999)

In the 90's NASA implemented a concept very similar to Iron Triangle called "Faster, Better, Cheaper" that in essence is the attempt to gain

improvements in all the above criterias. The early implementations were successful, but were followed by failures, so many expert thought that only two of the three parts of FBC can be optimized at once (El-Rawas and Menzies, 2010).

Research of NASA implementation of FBC (El-Rawas and Menzies, 2010) described FBC as follows:

- Faster is the optimization of time duration needed to finish projects.
- Better is the optimization of quality by reducing work defects.
- Cheaper is optimization of cost which is done by reducing the manhours or mandays needed to complete projects.

Figure 5 Typical prefabrication schedule of Sekisui House (Source: Atkinson, 1999)

Prefabrication system as an effort to optimize a project's duration has been proven to be able to fufill the "Faster" criteria. When compared to equal conventional projects, well planned and well controlled prefabrication projects can save up to 70% of duration (Wong et al., 2003). To reach such savings, effects of the material supply chain on the project duration must be considered. Good coordination and communication between all the parties involved to keep the supply chain working efficiently, is a vital requirement in implementing the prefabrication system in a project (Steinhardt et al., 2013).

Prefabrication system as an effort to optimize a project's budget has also been proven to be able to fufill the "Cheaper" criteria. With good planning and control, the cost to finish the project can be more accurately predicted and cost overrun can be minimized (Wong et al., 2003). One of the main financial challenges facing prefabrication housing projects is the relatively large initial

investment, limiting small and medium sized businesses ability to compete with larger companies (Steinhardt et al., 2013).

Some common problems affecting the project process and preventing the effort to reach time and cost efficiency (Steinhardt et al., 2013) areas follows:

- a) Project planning that is too flexible and disorderly, preventing the implementation of prefabrication system
- b) Difficulty in modifying parts of the building already installed at the project site and lack of design choices
- c) Disruption of project flow due to the lack of financial and knowledge capital. This problem is especially troublesome to small and medium business.
- d) More complex process, bigger design load, error correcting process that is more time consuming and smaller construction tolerance. Pioneer companies in prefabrication are especially vulnerable to these problems.
- e) Difficulty in coordinating with subcontractors that are unknowledgable and untrained in prefabrication system.
- f) Management problems arising from conflicts between traditional and prefabrication methods.

Table 6 SWOT analysis on implementing modern construction systems in Australia (Source: Luther, 2009)

Modular Industrialisation & Automation in Housing				
Strength	Affordability, quality, energy, waste reduction, environmental reduction. Quantity of product, on-time delivery			
Weakness	Perception of singular non-flexible product, minimal diversity, selective material & tooling for it.			
Opportunity	Spin-off business, skill training, exportability, innovation in products, designs & manufacturing			
Threat	Non-flexibility in machine use and tooling. Mono use of material selection and cost increases. Government regulations and codes to new innovations and systems.			

Unlike "Faster" and "Cheaper" which are quantitative concepts, the performance of prefabrication system to fulfill "Better" as a qualitative concept is much harder to prove. Some things that affect the market's perception to prefabricated housing quality (Steinhardt et al., 2013) are as follows:

- a) The decision to buy a home is very tightly connected to the consumer's feeling
- b) In the US, Europe, Australia and Asia, prefabricated housing bear a stigma as cheap and low quality products due to similarities to semipermanent housing.
- c) Prefabricated housing is perceived to lower the image of the occupants

- d) The effect on the house's resale value
- e) The homeowners does not want to be restricted in their choice to renovate their own homes.

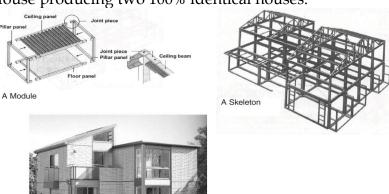
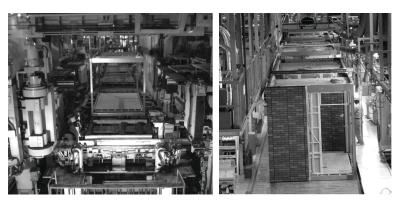


Figure 6 dan 7 Volumetric prefabricated houses (Source: Luther, 2009; Modscape®, Prebuilt®)


To anticipate the homeowners' wishes to modify the homes' design to their own specifications, housing contractor companies in Japan (Barlow, J., Ozaki, R., 2005) have implemented the following steps:

a) Every company on average have up to 300 standard design alternatives for the buyers to choose throughout the price ranges. In comparison. UK companies in average only have 30 unmodifiable standard design alternatives. Sekisui House company even offered 22 building models, each allowing over 50 alternative plans. The buyers may choose between timber or steel frame, numerous external finishes, and 3 interior finishing style (Japanese, Western, and hybrid). Buyers can also choose multiple types of interior fittings and fixtures. There is very little possibility of Sekisui House producing two 100% identical houses.

Figure 8 A Sekisui House home (Source: Hall, Target Magazine, Second Issue 2008, www.ame.org)

A Typical Finished House

Figure 9 and 10 Volumetric module's production line in Sekisui House (Source: Hall, Target Magazine, Second Issue 2008, www.ame.org)

Figure 11 Volumetric module stock in Sekisui House (Source: Hall, Target Magazine, Second Issue 2008, www.ame.org)

Figure 12 Transporting a volumetric module of Sekisui House (Source: Hall, Target Magazine, Second Issue 2008, www.ame.org)

b) The companies worked with suppliers of bathroom, storage and lighting fixtures to offer various models of standard interior designs. The catalogs are usually updated every 6 months. Some standard fittings like

- ventilation systems can also be replaced by the buyers' choice at a premium.
- c) Some companies offer renovating services and repair services for damaged housing after natural disaster like hurricanes, floodings and earthquakes.
- d) Big companies conduct thorough post-occupancy evaluations regularly to gauge and keep customers' satisfaction.

3. Conclusion

By referring to the success of the companies that used prefabrication system in housing construction projects, we can surmise that the meaning of "Better" that has the biggest influence on the successful implementation of prefabrication system, is the buyers' satisfaction of their purchases. Some actions that can be undertaken to ensure that are:

- a) Providing plenty of alternatives of building and plan design
- b) Regular updates to anticipate public trends
- c) Providing well trained people to help buyers in mixing and matching the numerous alternatives of building, interior and fittings/fixtures design
- d) Providing show houses to convince buyers of the quality and esthetics of prefabricated buildings
- e) Providing after sales services such as renovation, modification and repair services.

Other than that, the project initiation stage needs to include feasibility studies to identify the characteristics that affect the buyers' perception of the esthetics value and building quality of homes, since the concept "Better" may hold different meanings to construction practitioners and home buyers. An effective quality planning may then be undertaken, helping to popularize the usage of prefabrication system in housing construction projects.

References

- Thanoon W.A., Lee, W. P., Kadir, M. R. A., Jaafar "M. S., Salit, M. S., (2003). The Experiences of Malaysia and other countries in Industrialised Building System, Universiti Putra Malaysia, Faculty of Engineering, 43400 UPM Serdang
- Wong, R. W. M., Hao, J. J. L., Ho, C. M. F. (2003). Prefabricated Building Construction Systems Adopted in Hong Kong, Division of Building Science & Technology City University of Hong Kong
- Lovell, H. & Smith, S. (2010). Agencement in housing markets: The case of the UK construction industry, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh, UK, EH8 9XP
- Atkinson, R. (1999). Project management: cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria, Department of

- Information Systems, The Business School, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
- El-Rawas, O., Menzies, T. (2010). A second look at Faster, Better, Cheaper, LCSEE Department, West Virginia University, Morgantown, WV, USA
- Steinhardt, D. A., Manley, K., Miller, W. (2013), Reshaping housing-the role of prefabricated systems, School of Civil Engineering and Built Environment, Science and Engineering Faculty, Queensland University of Technology
- Barlow, J., Ozaki, R. (2005), Building mass customised housing through innovation in the production system: lessons from Japan, Tanaka Business School, Imperial College London, South Kensington Campus, London SW7 2AZ, England
- Luther, M., (2009), Towards prefabricated sustainable housing an introduction, BEDP environment design guide, vol. TEC 28, pp. 1-11
- R., (2008), Sekisui House, Target Magazine, Second Issue 2008, www.ame.org